您的位置: 专家智库 > >

国家自然科学基金(50701042)

作品数:1 被引量:3H指数:1
发文基金:国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇理学

主题

  • 1篇RESEAR...
  • 1篇BASED
  • 1篇MAGNET...
  • 1篇M
  • 1篇N-
  • 1篇ANTIPE...

传媒

  • 1篇Chines...

年份

  • 1篇2013
1 条 记 录,以下是 1-1
排序方式:
Mn-based antiperovskite functional materials: Review of research被引量:3
2013年
Our recent research on the Mn-based antiperovskite functional materials AXMn3 (A: metal or semiconducting elements; X: C or N) is outlined. Antiperovskite carbides (e.g., AlCMn3) show large magnetocaloric effect comparable to those of typical magnetic refrigerant materials. Enhanced giant magnetoresistance up to 70% at 50 kOe (1 Oe=79.5775 A.m-1) over a wide temperature span was obtained in Ga1-xZnxCMn3 and GaCMn3 xNix. In Cu0.3Sn0.5NMn3.2, negative thermal expansion (NTE) was achieved in a wide temperature region covering room temperature (α = -6.8 ppm/K, 150 K-40 K). Neutron pair distribution function analysis suggests the Cu/Sn-Mn bond fluctuation is the driving force for the NTE in Cu1- xSnxNMn3. In CuN1- xCxMn3 and CuNMn3 yCoy, the temperature coefficient of resistivity (TCR) decreases monotonically from positive to negative as Co or C content increases. TCR is extremely low when the composition approaches the critical points. For example, TCR is - 1.29 ppm/K between 240 K and 320 K in CuN0.95C0 05Mn3, which is one twentieth of that in the typical low-TCR materials (- 25 ppm/K). By studying the critical scaling behavior and X deficiency effect, some clues of localized-electron magnetism have been found against the background of electronic itinerant magnetism.
童鹏王铂森孙玉平
关键词:ANTIPEROVSKITE
共1页<1>
聚类工具0