In this study, we mainly introduce two salinity parameterization schemes used in Sea Ice Simulator (SIS), that is, isosaline scheme and salinity profile scheme. Comparing the equation of isosaline scheme with that of salinity profile scheme, we found that there was one different term between the two schemes named the salinity different term. The thermodynamic effect of the salinity difference term on sea ice thickness and sea ice concentration showed that: in the freezing processes from November to next May, the sea ice temperature could rise on the influence of the salinity difference term and restrain sea ice freezing; at the first melting phase from June to August, the upper ice melting rate was faster than the lower ice melting rate. Then sea ice temperature could rise and accelerate the sea ice melting; at the second melting phase from September to October, the upper ice melting rate was slower than the lower ice melting rate, then sea ice temperature could decrease and restrain sea ice melting. However, the effect of the salinity difference term on the sea ice thickness and sea ice concentration was weak. To analyze the impacts of the salinity different term on Arctic sea ice thickness and sea ice concentration, we also designed several experiments by introducing the two salinity parameterizations to the ice-ocean coupled model, Modular Ocean Model (MOM4), respectively. The simulated results confirmed the previous results of formula derivation.
The physical decomposition method separates atmospheric variables into four parts, correlating each with solar radiation, land-sea distribution, and inter-annual and seasonal internal forcing, strengthening the anomaly signal and increasing the correlation between variables. This method was applied to the reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), to study the effects of Arctic factors (Arctic oscillation (AO) and Arctic polar vortex) on wintertime temperatures in the Northern Hemisphere and China. It was fotmd that AO effects on zonal average temperature disturbance could persist for 1 month. In the AO negative phase in wintertime, the temperatures are lower in the mid-high latitudes than in normal years, but higher in low latitudes. When the polar vortex area is bigger, the zonal average temperature is lower at 50N. Influenced mainly by meridional circulation enhancement, cold air flows from high to low latitudes; thus, the temperatures in Continental Europe and the North American continent exhibit an antiphase seesaw relationship. When the AO is in negative phase and the Arctic polar vortex larger, the temperature is lower in Siberia, but higher in Greenland and the Bering Strait. Influenced by westerly troughs and ridges, the polar air disperses mainly along the tracks of atmospheric activity centers. The AO index can be considered a predictor of wintertime temperature in China. When the AO is in negative phase or the Asian polar vortex is intensified, temperatures in Northeast China and Inner Mongolia are lower, because under the influence of the Siberia High and northeast cold vortex, the cold air flows southwards.
The variations of surface air temperature(SAT)over the Arctic are closely related to global climate change.Based on reanalysis datasets and a newly defined Aleutian Low intensity index,we found a good correlation between intensity of winter Aleutian Low and the SAT over the Arctic during the subsequent summer.Explanations were given using correlation analysis,composite analysis,and singular value decomposition methods.When intensity of winter Aleutian Low was weaker,sea surface temperature appeared higher in the North Pacific in the subsequent spring and summer,resulting in mean meridional circulation anomalies and 500 hPa geopotential height anomalies in spring and summer.Anomalous upward motion in mid-latitudes and downward motion in high latitudes(Ferrel cell weakening)transported the warmer air to the north from lower layer to the upper layer followed by increases in the SAT over the Arctic.Anomalous downward motion over about 75°N also caused consequent adiabatic warming and contributed to inhibit the heat transportation from surface to upper layer.Negative 500 hPa geopotential height anomalies existed in mid-latitudes and positive anomalies existed in high latitudes.The pattern(low-in-south and high-in-north)benefited from increasing the inflow volume flux of the Bering Strait,which also made the SAT over the Arctic increase.The results of this study reveal the process that the summer SAT over the Arctic was modulated by interannual variability of intensity of winter Aleutian Low.