Ammonia oxidizing (AOB) and denitrifying bacteria (DNB) play an important role in soil nitrogen transformation in natural and agricultural ecosystems. Effects of long-term fertilization on abundance and community composition of AOB and DNB were studied with targeting ammonia monooxygenase (amoA) and nitrite reductase (nirK) genes using polymerase chain reaction- denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR, respectively. A field trial with different fertilization treatments in a rice paddy from Tai Lake region, centre East China was used in this study, including no fertilizer application (NF), balanced chemical fertilizers (CF), combined organic/inorganic fertilizer of balanced chemical fertilizers plus pig manure (CFM), and plus rice straw return (CFS). The abundances and riehnesses of amoA and nirK were increased in CF, CFM and CFS compared to NF. Principle component analysis of DGGE profiles showed significant difference in nirK and amoA genes composition between organic amended (CFS and CFM) and the non-organic amended (CF and NF) plots. Number of amoA copies was significantly positively correlated with normalized soil nutrient richness (NSNR) of soil organic carbon (SOC) and total nitrogen (T-N), and that of nirK copies was with NSNR of SOC, T-N plus total phosphorus. Moreover, nitrification potential showed a positive correlation with SOC content, while a significantly lower denitrification potential was found under CFM compared to under CFS. Therefore, SOC accumulation accompanied with soil nutrient richness under long-term balanced and organic/inorganic combined fertilization promoted abundance and diversity of AOB and DNB in the rice paddy.
JIN Zhen-jiangLI Lian-qingLIU Xiao-yuPAN Gen-xingQaiser HusseinLIU Yong-zhuo
Topsoil soil organic carbon(SOC) data were collected from long-term Chinese agro-ecosystem experiments presented in 76 reports with measurements over 1977 and 2006.The data set comprised 481 observations(135 rice paddies and 346 dry croplands) of SOC under different fertilization schemes at 70 experimental sites(28 rice paddies and 42 dry croplands).The data set covered 16 dominant soil types found in croplands across 23 provinces of China's Mainland.The fertilization schemes were grouped into six categories:N(inorganic nitrogen fertilizer only),NP(compound inorganic nitrogen and phosphorus fertilizers),NPK(compound inorganic nitrogen,phosphorus and potassium fertilizers),O(organic fertilizers only),OF(combined inorganic/organic fertilization) and Others(other unbalanced fertilizations such as P only,K only,P plus K and N plus K).Relative change in SOC content was analyzed,and rice paddies and dry croplands soils were compared.There was an overall temporal increase in topsoil SOC content,and relative annual change(RAC,g kg-1 yr-1) ranged -0.14-0.60(0.13 on average) for dry cropland soils and -0.12-0.70(0.19 on average) for rice paddies.SOC content increase was higher in rice paddies than in dry croplands.SOC increased across experimental sites,but was higher under organic fertilization and combined organic/inorganic fertilizations than chemical fertilizations.SOC increase was higher under balanced chemical fertilizations with compound N,P and K fertilizers than unbalanced fertilizations such as N only,N plus P,and N plus K.The effects of specific rational fertilizations on SOC increase persisted for 15 years in dry croplands and 20 years in rice paddies,although RAC values decreased generally as the experiment duration increased.Therefore,the extension of rational fertilization in China's croplands may offer a technical option to enhance C sequestration potential and to sustain long-term crop productivity.
WANG ChengJiPAN GenXingTIAN YouGuoLI LianQingZHANG XuHuiHAN XiaoJun