In this paper,Noether symmetry and Mei symmetry of discrete nonholonomic dynamical systems with regular and the irregular lattices are investigated.Firstly,the equations of motion of discrete nonholonomic systems are introduced for regular and irregular lattices.Secondly,for cases of the two lattices,based on the invariance of the Hamiltomian functional under the infinitesimal transformation of time and generalized coordinates,we present the quasi-extremal equation,the discrete analogues of Noether identity,Noether theorems,and the Noether conservation laws of the systems.Thirdly,in cases of the two lattices,we study the Mei symmetry in which we give the discrete analogues of the criterion,the theorem,and the conservative laws of Mei symmetry for the systems.Finally,an example is discussed for the application of the results.
We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discrete Lagrangian in phase space. The numerical calculations of a two-degree-of-freedom nonlinear harmonic oscillator show that the difference discrete variational method preserves the exactness and the invariant quantity.
In this paper we give a new method to investigate Noether symmetries and conservation laws of nonconservative and nonholonomic mechanical systems on time scales , which unifies the Noether's theories of the two cases for the continuous and the discrete nonconservative and nonholonomic systems. Firstly, the exchanging relationships between the isochronous variation and the delta derivatives as well as the relationships between the isochronous variation and the total variation on time scales are obtained. Secondly, using the exchanging relationships, the Hamilton's principle is presented for nonconservative systems with delta derivatives and then the Lagrange equations of the systems are obtained. Thirdly, based on the quasi-invariance of Hamiltonian action of the systems under the infinitesimal transformations with respect to the time and generalized coordinates, the Noether's theorem and the conservation laws for nonconservative systems on time scales are given. Fourthly, the d'Alembert-Lagrange principle with delta derivatives is presented, and the Lagrange equations of nonholonomic systems with delta derivatives are obtained. In addition, the Noether's theorems and the conservation laws for nonholonomic systems on time scales are also obtained. Lastly, we present a new version of Noether's theorems for discrete systems. Several examples are given to illustrate the application of our results.
This paper introduces the canonical coordinates method to obtain the first integral of a single-degree freedom constraint mechanical system that contains conserva-tive and non-conservative constraint homonomic systems. The definition and properties of canonical coordinates are introduced. The relation between Lie point symmetries and the canonical coordinates of the constraint mechanical system are expressed. By this re-lation, the canonical coordinates can be obtained. Properties of the canonical coordinates and the Lie symmetry theory are used to seek the first integrals of constraint mechanical system. Three examples are used to show applications of the results.
We present two methods to reduce the discrete compound KdV-Burgers equation, which are reductions of the independent and dependent variables: the translational invariant method has been applied in order to reduce the independent variables; and a discrete spectral matrix has been introduced to reduce the number of dependent variables. Based on the invariance of a discrete compound KdV-Burgers equation under infinitesimal transformation with respect to its dependent and independent variables, we present the determining equations of transformation Lie groups for the KdV-Burgers equation and use the characteristic equations to obtain new forms of invariants.
In this paper, we present a new method to obtain the Lie symmetries and conserved quantities of the discrete wave equation with the Ablowitz-Ladik-Lattice equations. Firstly, the wave equation is transformed into a simple difference equation with the Ablowitz-Ladik-Lattice method. Secondly, according to the invariance of the discrete wave equation and the Ablowitz-Ladik-Lattice equations under infinitesimal transformation of dependent and independent variables, we derive the discrete determining equation and the discrete restricted equations. Thirdly, a series of the discrete analogs of conserved quantities, the discrete analogs of Lie groups, and the characteristic equations are obtained for the wave equation. Finally, we study a model of a biological macromolecule chain of mechanical behaviors, the Lie symmetry theory of discrete wave equation with the Ablowitz-Ladik-Lattice method is verified.
This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.
This paper presents extensions to the traditional calculus of variations for mechanico-electrical systems containing fractional derivatives. The Euler Lagrange equations and the Hamilton formalism of the mechanico-electrical systems with fractional derivatives are established. The definition and the criteria for the fractional generalized Noether quasi- symmetry are presented. Furthermore, the fractional Noether theorem and conseved quantities of the systems are obtained by virtue of the invariance of the Hamiltonian action under the infinitesimal transformations. An example is presented to illustrate the application of the results.