针对典型的雷达和红外异类传感器信息融合系统,提出了一种新的雷达和红外信息融合算法。对雷达和红外传感数据进行了预处理,分别滤波得到各自的局部航迹,基于线性最小均方误差准则(Linear Minimum Mean Square Error,LMMSE)对局部航迹进行融合以得到最终航迹。仿真结果表明:该算法可以对雷达和红外传感器进行有效融合并大幅提高航迹跟踪精度。
根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的一阶统计矩,还可以传递多目标个数(即势)的概率分布。蒙特卡罗仿真实验表明,相比Mahler提出的不可分辨目标PHD滤波器,所提出的不可分辨目标CPHD滤波器具有更加精确和稳定的多目标个数和状态估计,但它的计算量要大于不可分辨目标PHD滤波器。