Four ZSM-5 zeolite catalysts with different Si/Al ratios for the catalytic cracking of C4 fractions to produce ethylene and propylene were prepared in this study.First,the adsorption isotherms of pure n-butane and butene-1 and their mixtures on these catalysts at 300K and p=0—100kPa were measured using the intelligent gra- vimetric analyzer.The experimental results indicate that the presence of Al can significantly affect the adsorption of butene-1 than that of n-butane on ZSM-5 zeolites.Then,the double Langmuir(DL)model was applied to study the pure gas adsorption on ZSM-5 zeolites for pure n-butane and butene-1.By combining the DL model with the ideal adsorbed solution theory(IAST),the IAST-DL model was applied to model the butene-1(1)/n-butane(2)binary mixture adsorption on ZSM-5 zeolites with different Si/Al ratios.The calculated results are in good agreement with the experimental data,indicating that the IAST-DL model is effective for the present systems.Finally,the adsorp- tion over a wide range of variables was predicted at low pressure and 300K by the model proposed.It is found that the selectivity of butene-1 over n-butane increases linearly with the decrease of Si/Al ratio.A correlation between the selectivity and Si/Al ratio of the sample was proposed at 300K and p=0.08MPa.
The image contrast inversion was investigated in detail when soft polymeric materials were imaged with tapping mode atomic force microscopy (TM-AFM). Solvent cast film of polystyrene-block-poly(ethylene/butylene)block-polystyrene (SEBS) triblock copolymers was used as a model system in this study, which showed phase separation domains with a size of several tens of nanometers. AFM contrast reversal process, through positive image, to an intermediary and till negative image, could be clearly seen in height images of the soft block copolymer using different tapping force. The higher tapping force would lead to not only contrast inversion, but also the different size of the microdomains and different roughness of the images. Moreover, contrast inversion was explained on the basis of attractive and repulsive contributions to the tip-sample interaction and indentation of the soft domains.