区域环境系统集成模式(RIEMS2.0,Regional Integrated Environment Modeling System Version 2.0)是由中国科学院大气物理研究所东亚区域气候环境重点实验室在RIEMS1.0基础上发展的区域气候模式。为了检验RIEMS2.0对短期气候的模拟能力,利用降水和气温(2 m)观测资料检验RIESM2.0不同物理过程和初始条件集合模拟1997/1998年夏季中国华北地区高温干旱和长江流域洪涝两个连续极端气候事件的能力(连续积分时间(1997年3月1日—1998年8月31日)共18个月),比较模拟和观测的1997/1998年夏季降水和气温。集合模拟结果表明RIEMS2.0能很好模拟1997/1998年夏季降水和气温及其两年差值分布;模拟和观测的日降水和平均气温结果有很好的相关性,但是降水模拟总体高估,干旱和江淮及江南区气温模拟偏高而半干旱和湿润区气温模拟偏低。在不同物理过程集合模拟中,虽然集合平均距平相关系数(ACC)和均方根误差(RMSE)并不是优于所有集合成员值,但集合模拟能减小模式的不确定性,在一定程度上提高模拟精度。不同显式水汽方案和积云参数化方案对降水、气温模拟效果表现出很好的一致性,湿润区一致性最好。因此,RIEMS2.0模拟能揭示1997/1998年两个连续极端气候事件夏季降水和气温空间分布,反映不同子区域降水和气温分布特征,各集合成员的模拟结果存在差异的同时也保持了很好的稳定性,选择合适的物理过程可以提高模式对区域气候的模拟能力。
Regional Integrated Environment Modeling System Version 2.0 (RIEMS2.0) is now being developed by the Key Laboratory of Regional Climate-Environment for Temperate East Asia, Chinese Academy of Sciences. In order to test the sensitivity of the RIEMS2.0 model domain to simulate long-term climate and its change, and provide a basis for the further development and application of the model, the authors compared results between simulated and observed precipitation and surface-airtemperature using two model domains under different cumulus parameterization schemes. The model was driven by NCEP/NCAR re-analysis data with a simulation duration ranging from 1 January 1979 to 31 December 2007. There were no significant differences found in the spatial distributions of the simulated precipitation and surface-air-temperature, or interannual variations between the two model domains. There were, however, differences observed between the two model domain simulations of local sub-regions. The smaller model domain more accurately simulated precipitation, especially in summer (June, July, and August), and decreased the bias of surface-airtemperature, especially in winter (December, January, and February). The weak summer and winter monsoons simulated by the smaller model domain was a result of boundary forcings and may partially account for the improvements of this model.
Regional climate models(RCMs) can provide far more precise information than general circulation models(GCMs).However,RCMs depend on GCM results or re-analysis products providing boundary conditions,especially for future climate scenarios.Meanwhile,the capacity of RCMs to reproduce precipitation is strongly connected to its performance on circulation and moisture transport simulations in the low troposphere,which is the key problem with RCMs at present.In the Regional Climate Model Inter-comparison Project for East Asia(RMIP III),the results of ECHAM5/MPI-OM(the European Centre-Hamburg model version 5/Max Planck Institute Ocean Model,simplified as E5OM here) are used to drive RCMs for the past(1978?2000) climate simulation and future(2038?70) climate scenarios.Therefore,it is necessary to test E5OM's ability to represent atmospheric circulation,which defines the large-scale circulation for RCMs.Here,comparisons between the E5OM results and NCEP/NCAR(simplified as NCEP) re-analysis data in the low troposphere for the years 1978 to 2000 are performed.The results show that E5OM results can generally reproduce atmospheric circulations in the low troposphere.However,differences can be detected in East Asian summer and winter monsoon simulations.For summer,there is an anti-cyclone circulation for the difference of wind vector at 850 hPa in Southeast China,the Indo-China Peninsula,the South China Sea,and the northwestern Pacific.For winter,due to the weaker northwesterly wind in Northeast Asia,the northeasterly wind from the Indo-China Peninsula to Taiwan in E5OM extends northward with greater intensity than that in NCEP.These differences will have a considerable influence on the low level atmospheric circulation and water vapor transport as well as the location and intensity of the precipitation.Therefore,when E5OM results are to be used as initial and boundary conditions to drive RCMs,the differences between NCEP and E5OM should be considered.