A wide-viewing-angle visible light imaging system (VLIS) was mounted on the Joint Texas Experimental Tokamak (J-TEXT) to monitor the discharge process. It is proposed that by using the film data recorded the plasma vertical displacement can be estimated. In this paper installation and operation of the VLIS are presented in detailed. The estimated result is further compared with that measured by using an array of magnetic pickup coils. Their consistency verifies that the estimation of the plasma vertical displacement in J-TEXT by using the imaging data is promising.
A set of four in-vessel saddle coils was designed to generate a helical field on the J- TEXT tokamak to study the influences of the external perturbation field on plasma. The coils are fed with alternating current up to 10 kA at frequency up to 10 kHz. Due to the special structure, complex thermal environment and limited space in the vacuum chamber, Jt is very important to make sure that the coils will not be damaged when undergoing the huge electromagnetic forces in the strong toroidal field, and that their temperatures don't rise too much and destroy the in- sulation. A 3D finite element model is developed in this paper using the ANSYS code, stresses are analyzed to find the worst condition, and a mounting method is then established. The results of the stress and modal analyses show that the mounting method meets the strength requirements. Finally, a thermal analysis is performed to study the cooling process and the temperature distribution of the coils.
HAO ChangduanZHANG MingDING YonghuaRAO BoCEN YishunZHUANG Ge
To improve the understanding of the turbulence intermittency, a detailed investigation of the intermittency of the density fluctuations has been performed in the boundary of J-TEXT. The intermittency of the density fluctuations and its influence on the radial transport are reported. The probability distribution functions of the density fluctuations are not scale-invariant, being inconsistent with the self-organized criticality hypothesis. The underlying dynamics of the intermittency are detected using the quiet-time statistical method. The probability distribution function of the quiet times shows double-power-law regions, indicating the existence of correlations between the successive burst events.