Using the constant addition technique,the coprecipitation of lanthanum,gadolinium,and lutetium with aragonite in seawater was experimentally investigated at 25 ℃.Their concentrations in aragonite overgrowths were determined by inductive coupled plasma mass spectrometer.All these lanthanides were strongly enriched in aragonite overgrowths.The amount of lanthanum,gadolinium,and lutetium incorporated into aragonite accounted for 57%–99%,50%–89%,and 40%–91% of their initial total amount,respectively.With the in...
This is a report of the study of the authigenic sulfide minerals and their sulfur isotopes in a sediment core (NH-1) collected on the northern continental slope of the South China Sea, where other geo-physical and geochemical evidence seems to suggest gas hydrate formation in the sediments. The study has led to the findings: (1) the pyrite content in sediments was relatively high and its grain size relatively large compared with that in normal pelagic or hemipelagic sediments; (2) the shallowest depth of the acid volatile sulfide (AVS) content maximum was at 437.5 cm (>2 μmol/g), which was deeper than that of the authigenic pyrite content maximum (at 141.5-380.5 cm); (3) δ 34S of authigenic pyrite was positive (maximum: +15‰) at depth interval of 250-380 cm; (4) the positive δ 34S coincided with pyrite enrichment. Compared with the results obtained from the Black Sea sediments by Jorgen-sen and coworkers, these observations indicated that at the NH-1 site, the depth of the sulfate-methane interface (SMI) would be or once was at about 437.5-547.5 cm and the relatively shallow SMI depth suggested high upward methane fluxes. This was in good agreement with the results obtained from pore water sulfate gradients and core head-space methane concentrations in sediment cores collected in the area. All available evidence suggested that methane gas hydrate formation may exist or may have existed in the underlying sediments.