A sampling switch with an embedded digital-to-skew converter(DSC) is presented.The proposed switch eliminates time-interleaved ADCs' skews by adjusting the boosted voltage.A similar bridged capacitors' charge sharing structure is used to minimize the area.The circuit is fabricated in a 0.18μm CMOS process and achieves sub-1 ps resolution and 200 ps timing range at a rate of 100 MS/s.The power consumption is 430μW at maximum.The measurement result also includes a 2-channel 14-bit 100 MS/s time-interleaved ADCs(TI-ADCs) with the proposed DSC switch's demonstration.This scheme is widely applicable for the clock skew and aperture error calibration demanded in TI-ADCs and SHA-less ADCs.
Sample-time error between channels degrades the resolution of time-interleaved analog-to-digital converters (TIADCs).A calibration method implemented in mixed circuits with low complexity and fast convergence is proposed in this paper.The algorithm for detecting sample-time error is based on correlation and widely applied to wide-sense stationary input signals.The detected sample-time error is corrected by a voltage-controlled sampling switch.The experimental result of a 2-channel 200-MS/s 14-bit TIADC shows that the signal-to-noise and distortion ratio improves by 19.1 dB,and the spurious-free dynamic range improves by 34.6 dB for a 70.12-MHz input after calibration.The calibration convergence time is about 20000 sampling intervals.
: This paper presents an l 1-bit 22-MS/s 0.6-mW successive approximation register (SAR) analog-to- digital converter (ADC) using SMIC 65-nm low leakage (LL) CMOS technology with a 1.2 V supply voltage. To reduce the total capacitance and core area the split capacitor architecture is adopted. But in high resolution ADCs the parasitic capacitance in the LSB-side would decrease the linearity of the ADC and it is hard to calibrate. This paper proposes a parasitic capacitance compensation technique to cancel the effect with no calibration circuits. Moreover, dynamic circuits are used to minimize the switching power of the digital logic and also can reduce the latency time. The prototype chip realized an 11-bit SAR ADC fabricated in SMIC 65-nm CMOS technology with a core area of 300 × 200 μm2. It shows a sampling rate of 22 MS/s and low power dissipation of 0.6 mW at a 1.2 V supply voltage. At low input frequency the signal-to-noise-and-distortion ratio (SNDR) is 59.3 dB and the spurious-free dynamic range is 72.2 dB. The peak figure-of-merit is 36.4 fJ/conversion-step.