V-doped TiO2 nanoparticles(NPs) as dye adsorbents are synthesized by the co-precipitation method and characterized by X-ray powder diffraction, transmission electron microscope, N2 adsorption at 77 K, and X-ray photoelectron spectroscopy. The adsorption of methylene blue(MB) on the V-doped TiO2 NPs is studied in detail by varying the calcination temperature and V doping amount of the adsorbent, adsorbate concentration, adsorbent dosage, agitation rate, reaction temperature, and p H. The comparison of dye adsorption on V-doped TiO2 and parent TiO2 demonstrates that the adsorptive activity of TiO2 can be improved by V doping. The enhanced adsorptive performance can be attributed to the tremendous changes in texture, structure, and surface morphology of adsorbent. The adsorption kinetic analysis shows that the adsorption follows the pseudo-second order kinetics. The apparent activation energy for adsorption is calculated by Arrhenius formula to be 37.6 k J·mol-1, indicating that the adsorption is controlled by both of the diffusion and interfacial adsorption steps. The adsorption data are analyzed using Langmuir and Freundlich isotherms and the results indicate that the Langmuir model provides better correlation of the experimental data. The results conclusively show that the adsorption of MB is a spontaneous behavior and endothermic reaction with the ΔH value of 17.60 k J·mol-1.