Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contains both structural and aerodynamic nonlinearities. Hopf bifurcation theory is used to analyze the flutter speed of the system. The effects of system parameters on the flutter speed are studied. The 4th order Runge-Kutta method is used to calculate the stable limit cycle responses and chaotic motions of the aeroelastic system. Results show that the number and the stability of equilibrium points of the system vary with the increase of flow speed. Besides the simple limit cycle response of period 1, there are also period-doubling responses and chaotic motions in the flutter system. The route leading to chaos in the aeroelastic model used here is the period-doubling bifurcation. The chaotic motions in the system occur only when the flow speed is higher than the linear divergent speed and the initial condition is very small. Moreover, the flow speed regions in which the system behaves chaos axe very narrow.
The problem of nonlinear aerothermoelasticity of a two-dimension thin plate in supersonic airflow is examined. The strain-displacement relation of the von Karman's large deflection theory is employed to describe the geometric non-linearity and the aerodynamic piston theory is employed to account for the effects of the aerodynamic force. A new method, the differential quadrature method (DQM), is used to obtain the discrete form of the motion equations. Then the Runge-Kutta numerical method is applied to solve the nonlinear equations and the nonlinear response of the plate is obtained numerically. The results indicate that due to the aerodynamic heating, the plate stability is degenerated, and in a specific region of system parameters the chaos motion occurs, and the route to chaos motion is via doubling-period bifurcations.