The aim of this study is to synthesize of magnetic SiO2 nanoparticles(MSNPs)loaded with Naproxen(NAP-MSNPs)for targeting anti-flammatory therapy.The Fe3O4 nanoparticles were coated with a thin layer of silica by stber method and the drug was encapsulated in it simultaneously.The optimal conditions were investigated for the synthesis of MSNPs.The shape,size,and phase structure of NAP-MSNP were characterized by transmission electron micrographs(TEM)and X-ray diffraction(XRD).The drug encapsulation efficiency was confirmed by FT-IR and measured by UV spectrometry.The NAP-MSNPs show the response at the external magnetic field and the drug could be released readily from NAP-MSNPs.All of these facts suggest the NAP-MSNPs could be applied in a promising drug release-controlling system for targeting anti-inflammatory therapy.
A novel magnetic nanocarrier was strategically designed and successfully prepared.Photosensitizer 2,7,12,18-tetramethyl-3,8-di-(1-propoxyethyl)-13,17-bis-(3-hydroxypropyl)porphyrin(PHPP)was encapsulated into polylactic acid(PLA)-coated Fe3O4 nanoparticles.The diameter of nanocarrier is 30-50 nm by transmission electron micrograph(TEM).The encapsulation efficiency of photosensitizer is 27.98% calculated from UV-vis absorption spectra.The nanocarrier shows obvious photocytotoxic activity to Hela299 tumor cells in vitro.