DNA damage response (DDR) in different cell cycle status of human peripheral blood lymphocytes (PBLs) and the role of H2AX in DDR were investigated. The PBLs were stimulated into cell cycle with phytohemagglutinin (PHA). The apoptotic ratio and the phosphorylation H2AX (S139) were flow cytometrically measured in resting and proliferating PBLs after treatment with camptothecin (CPT) or X-ray. The expressions of γH2AX, Bcl-2, caspase-3 and caspase-9 were detected by Western blotting. DDR in 293T cells was detected after H2AX was silenced by RNAi method. Our results showed that DNA double strand breaks (DSBs) were both induced in quiescent and proliferating PBLs after CPT or X-ray treatment. The phosphorylation of H2AX and apoptosis were more sensitive in proliferating PBLs compared with quiescent lymphocytes (P0.05). The expression levels of anti-apoptotic proteins Bcl-2 were reduced and cleaved caspase-3 and caspase-9 were increased. No significant changes were observed in CPT-induced apoptosis in 293T cells between H2AX knocking down group and controls. It was concluded that proliferating PBLs were more vulnerable to DNA damage compared to non-stimulated lymphocytes and had higher apoptosis rates. γH2AX may only serve as a marker of DNA damage but exert no effect on apoptosis regulation.
In this study,CD133+ subpopulations were isolated from 41 primary colorectal cancer tissues,the proliferation and cell cycle distribution of the cells were examined without in vitro expansion,and then compared to those of cell lines.The detection of CD133 in colorectal cancer tissues,isolation of CD133+ and CD133-epithelial subpopulations,Ki-67/DNA multiparameter assay and cell volume analysis were flow cytometrically conducted.The results showed that Ki-67 expression was correlated with CD133 level in primary cancer tissues,while cell cycle G 2 /M phase distribution or clinicopathological characteristics was not.In addition,the CD133+ cells showed larger cell volume and higher Ki-67 expression as compared with CD133-cells.But there was no statistically significant difference in G 2 /M phase distribution between the two subpopulations.Our results demonstrated that the CD133+ subpopulation in colorectal cancer tissue contained more actively cycling and proliferating cells,which was not correlated to clinicopathological factors but might contribute to tumor progression and poor clinical outcome.
The forkhead family members of transcription factors (FoxOs) are expected to be potential cancer-related drug targets and thus are being extremely studied recently. In the present study, FoxO3a, one major member of this family, was identified to be down-regulated in colorectal cancer through mi- cro-array analysis, which was confirmed by RT-PCR and Western blot in 28 patients. Moreover, immu- nohistochemistry (IHC) showed that the expression levels of FoxO3a were remarkably reduced in 99 cases of primary colorectal cancer, liver metastasis, and even in metaplastic colorectal tissue. IHC also revealed an exclusion of FoxO3a from the nucleus of most cells of tumor-associated tissues. Silencing FoxO3a by siRNA led to elevation of G2-M phase cells. We conclude that the downregulation of FoxO3a may greatly contribute to tumor development, and thus FoxO3a may represent a novel thera- peutic target in colorectal cancer.
This study examined the role of EMP-1 in tumorigenesis of non-small cell lung carcinoma (NSCLC) and the possible mechanism. Specimens were collected from 28 patients with benign lung diseases and 28 with NSCLC, and immunohis to chemically detected to evaluate the correlation of EMP-1 expression to the clinical features of NSCLC. Recombinant adenovirus was constructed to over-express EMP-1 and then infect PC9 cells. Cell proliferation was measured by Ki67 staining. Western blotting was performed to examine the effect of EMP-1 on the PI3K/AKT signaling. Moreover, tumor xeno-grafts were established by subcutaneous injection of PC9 cell suspension (about 5×107/mL in 100 μL of PBS) into the right hind limbs of athymic nude mice. The results showed EMP-1 was significantly up-regulated in NSCLC patients as compared with those with benign lung diseases. Over-expression of EMP-1 promoted proliferation of PC9 cells, which coincided with the activation of the PI3K/AKT pathway. EMP-1 promoted the growth of xenografts of PC9 cells in athymic nude mice. It was concluded that EMP-1 expression may contribute to the development and progress of NSCLC by activating PI3K/AKT pathway.