A new structural configuration with better impact stability for increasing energy absorbing efficiency is found. Based on finite element analysis, deformation modes of double-hat structure under axial impact loading are categorized to find the main reasons that affect deformation stability. It is revealed that, in a double-hat structure, the location of the flanges is highly related to the deform- ation mode and energy absorbing efficiency. Moving the flanges away from their traditional mid-loca- tion may result in more regular and stable deformation mode and achieve higher energy absorbing ef- ficiency. The flange offset value needs to be controlled within a certain range, otherwise, the doub- le-hat structure would tend to deform like a top-hat structure and the energy absorbing efficiency could be compromised. These findings and analyses lead to a new structural design configuration- asymmetric flange locations--for enhancing the deformation mode stability in double-hat structures.
Based on the cellular automaton (CA) method, a numerical model was developed to simulate the dendritic growth of magnesium alloy with HCP crystal structure. The growth kinetics was calculated from the complete solution of the transport equations. By defining a special neighborhood configuration with the square CA cell, and using a set of capturing rules which were proposed by BELTRAN-SANCHEZ and STEFANESCU for the dendritic growth of cubic crystal metals during solidification, modeling of dendritic growth of magnesium alloy with different growth orientations was achieved. Simulation of equiaxed dendritic growth and columnar dendritic growth under directional solidification was carried out, and validation was performed by comparing the simulated results with the experimental results and those in the previously published works.
A numerical model based on the cellular automaton method for the three-dimensional simulation of dendritic growth of magnesium alloy was developed. The growth ki- netics was calculated from the complete solution of the transport equations. By con- structing a three-dimensional anisotropy model with the cubic CA cells, simulation of dendritic growth of magnesium alloy with six-fold symmetry in the basal plane was achieved. The model was applied to simulate the equiaxed dendritic growth and columnar dendritic growth under directional solidification, and its capability was addressed by comparing the simulated results to experimental results and those in the previously published works. Meanwhile, the three-dimensional simulated results were also compared with that of in two dimensions, offering a deep insight into the microstructure formation of magnesium alloy during solidification.
Under the cold-chamber high pressure die casting (HPDC) process, samples were produced with AM60B magnesium alloy to investigate the microstructure characteristics of the eutectics, especially focusing on the constitution, morphology and distribution of the eutectics over cross section of the castings. Attentions were also paid to study the effect of heat treatment on the eutectics in the die castings. Based on experimental analysis using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), it was determined that fully divorced eutectics consisting of c^-Mg and l%MglzA112 appeared at the grain boundary of the primary c^-Mg in the as-cast microstructure. Islands and networks of β-Mg17Al12 phase were observed in the central region of the castings, while the β-Mg17Al12 phase revealed a more dispersed and granular morphology on the surface layer. The two phases ratio β/α in the central region of the castings was approximately 10%, which was higher than that on the surface layer. Besides, the defect bands contained a higher percentage of the eutectics than the adjacent regions. After aging treatment (T6), only α-Mg phase was detected by XRD in the AM60B magnesium alloy, though a small amount of precipitated β-MgITAI12 phase was observed at the grain boundary. In contrast to the microstructure of die cast AZ91D magnesium alloy under the same T0 heat treatment, no discontinuous precipitation of the β-MgITAI12 phase was observed in AMO0B magnesium alloy die castings.