In this paper,the dynamic characteristics of building clusters are simulated by large eddy simulation at high Reynolds number for both homogeneous and heterogeneous building clusters.To save the computational cost a channel-like flow model is applied to the urban canopy with free slip condition at the upper boundary.The results show that the domain height is an important parameter for correct evaluation of the dynamic characteristics.The domain height must be greater than 8h(h is the average building height)in order to obtain correct roughness height while displacement height and roughness sublayer are less sensitive to the domain height.The Reynolds number effects on the dynamic characteristics and flow patterns are investigated.The turbulence intensity is stronger inside building cluster at high Reynolds number while turbulence intensity is almost unchanged with Reynolds number above the building cluster.Roughness height increases monotonously with Reynolds number by 20%from Re*=103 to Re*=105 but displacement height is almost unchanged.Within the canopy layer of heterogeneous building clusters,flow structures vary between buildings and turbulence is more active at high Reynolds number.
The generation of a hairpin vortex from near-wall streamwise vortices is studied via the direct numerical simulation(DNS) of the streak transient growth in the minimal channel flow at Re_τ- 400.The streak profile is obtained by conditionally averaging the DNS data of the fully developed turbulent channel flow at the same Reynolds number.The near-wall streamwise vortices are produced by the transient growth of the streak which is initially subjected to the sinuous perturbation of the spanwise velocity.It is shown that the arch head of the hairpin vortex first grows from the downstream end of the stronger streamwise vortex and then connects with the weaker,opposite-signed streamwise vortex in their overlap region,forming a complete individual hairpin structure.The vorticity transport along the vortex lines indicates that the strength increase and the spatial expansion of the arch head are due to the stretching and the turning of the vorticity vector,respectively.The hairpin packets could be further produced from the generated individual hairpin vortex following the parent-offspring process.
The effect of active control imposed at the wall on optimal structures in wall turbulence is studied by using a linear transient growth model.When the detection plane of the control is located in the buffer layer,the influence of the control on the transient growth of large scale motion becomes negligible as Reynolds number increases.However,if the control signal is detected at the plane located in the logarithm region,the transient growth at large scale can be greatly suppressed.New peak values of transient growth resulting from the strong blowing and suction on the wall exist.The study indicates that a proper selection of control imposed on the wall can suppress the large scale motion in the logarithmic region.
The particle motions of dispersion and transport in air channel flow are investigated using a large eddy simulation(LES) and Lagrangian trajectory method. The mean and fluctuating velocities of the fluids and particles are obtained,and the results are in good agreement with the data in the literature. Particle clustering is observed in the near-wall and low-speed regions. To reveal the evolution process and mechanism of particle dispersion and transport in the turbulent boundary layer, a multi-group Lagrangian tracking is applied when the two-phase flow has become fully developed: the fluid fields are classified into four sub-regions based on the flow characteristics, and particles in the turbulent region are divided accordingly into four groups when the gas–particle flow is fully developed. The spatiotemporal transport of the four groups of particles is then tracked and analyzed. The detailed relationship between particle dispersion and turbulent motion is investigated and discussed.
Hao LuWen-Jun ZhaoHui-Qiang ZhangBing WangXi-Lin Wang
The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct nu- merical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases, respectively. Lagrangian and Eulerian time scales of both phases are cal- culated using velocity correlation functions. Due to flow anisotropy, micro-time scales are not the same with the theo- retical estimations in large Reynolds number (isotropic) tur- bulence. Lagrangian macro-time scales of particle-phase and of fluid-phase seen by particles are both dependent on particle Stokes number. The fluid-phase Lagrangian inte- gral time scales increase with distance from the wall, longer than those time scales seen by particles. The Eulerian inte- gral macro-time scales increase in near-wall regions but de- crease in out-layer regions. The moving Eulerian time scales are also investigated and compared with Lagrangian integral time scales, and in good agreement with previous measure- ments and numerical predictions. For the fluid particles the micro Eulerian time scales are longer than the Lagrangian ones in the near wall regions, while away from the walls the micro Lagrangian time scales are longer. The Lagrangian integral time scales are longer than the Eulerian ones. The results are useful for further understanding two-phase flow physics and especially for constructing accurate prediction models of inertial particle dispersion.
Transports of air particulate matters(PM) from face sources in the atmospheric boundary layer(ABL) are investigated by the Eulerian single fluid model and the Lagrangian trajectory method,respectively.Large eddy simulation is used to simulate the fluid phase for high accuracy in both two approaches.The mean and fluctuating PM concentrations,as well as instantaneous PM distributions at different downstream and height positions,are presented.Higher mean and fluctuating particle concentrations are predicted by the Eulerian approach than the Lagrangian one.For the Lagrangian method,PM distributions cluster near the ground-wall because of the preferential dispersion of inertial particles by turbulence structures in the ABL,while it cannot be obtained by the Eulerian single fluid method,because the two-phase velocity differences are neglected in the Eulerian method.