Polyaniline(PANI) was one of the most extensively studied adsorbents due to its low cost and good environmental stability. The objective of the current study was to improve the selective capabilities of PANI for anionic dyes. We found that the acid doped PANI prepared with hydrochloric acid and p-toluenesulfonic acid(PTSA) could selectively adsorb anionic dyes. It exhibited very good selectivity for OG dye, the mechanism was proposed based on the chemical interaction of PANI with the sulfonate group of the dyes. The effects of solution p H, initial dye concentration, and different HCl/PTSA mole ratios on the adsorption capacity of OG have been investigated. Kinetic simulations indicated that the adsorption process could be well represented by pseudo-second-order kinetic plots. The isothermal adsorption curve fitting also showed that the adsorption process could be well described by the Langmuir isothermal equation. The results showed that acid doped PANI could be employed as a promising adsorbent for anion removal from dye wastewater.
A bismuth vanadate(BiVO4)photoanode with a cocatalyst consisting of NiFe layered double‐hydroxide(NiFe‐LDH)nanoparticles was fabricated for photoelectrochemical(PEC)water splitting.NiFe‐LDH nanoparticles,which can improve light‐absorption capacities and facilitate efficient hole transfer to the surface,were deposited on the surface of the BiVO4 photoanode by a hydrothermal method.All the samples were characterized using X‐ray diffraction,scanning electron microscopy,and diffuse‐reflectance spectroscopy.Linear sweep voltammetry and current‐time plots were used to investigate the PEC activity.The photocurrent response of NiFe‐LDH/BiVO4 at 1.23 V vs the reversible hydrogen electrode was higher than those of Ni(OH)2/BiVO4,Fe(OH)2/BiVO4 and pure BiVO4 electrodes under visible‐light illumination.NiFe‐LDH/BiVO4 also gave a superior PEC hydrogen evolution performance.Furthermore,the stability of the NiFe‐LDH/BiVO4 photoanode was excellent compared with that of the bare BiVO4 photoanode,and offers a novel method for solar‐assisted water splitting.
Qizhao WangTengjiao NiuLei WangJingwei HuangHoude She