Anode material Li4Ti5O12 was prepared at 800℃ by a solid-state reaction, followed by heat-treatment at 600℃ for different times (0, 2, 8, and 12 h). The effects of heat-treatment time on the particle morphology, rate-capability, and electrode kinetic process of the Li4Ti5O12 electrode, and on the lithium ion diffusion coefficient inside the Li4Ti5O12 electrode were investigated. Proper heat treatment could smoothen the particle surface of Li4Ti5O12 particles and increase the rate-capability of the electrode. Overlong heat treatment might cause particle aggregation and hence result in a poor electrode kinetic process. A sample with 8 h of heat treatment showed the best rate-capability and the lowest electrode reaction resistance. Heat treatment for 2-8 h does not significantly change the lithium ion diffusion coefficient inside the Li4Ti5O12 electrode, whereas, 12-h treatment results in a lower lithium ion diffusion coefficient.
Nano/micro-scaled CoSnx alloy powders synthesized via carbothermal reduction at 800 ℃ with different compositions were characterized for anode materials in Li-ion battery. The synthesized spherical CoSnx particles show a loose nano/micro sized particle structural characteristic, which is apparently favorable for the improvement of cycling stability. The prepared CoSn3 alloy composite electrode exhibits a low initial irreversible capacity of ca.130 mAh·g-1 and a high specific capacity of ca.440 mAh·g-1 at constant current density of 100 mA·g-1. The relatively large particle size is considered to be the main reason for the lower irreversible capacity of CoSn3 electrode.
SnSb alloy powders for the anode of Li-ion batteries were synthesized by two kinds of reduction precipitation methods: solution titration and rapid mixing. Two kinds of SnSb alloy powders showed different phase compositions and particle morphologies although the same starting materials were used. The SnSb alloy electrode synthesized by titration exhibits high reversible specific capacity and good cycling stability, whereas the rapid-mixing sample shows high irreversible capacity and fast capacity fade. The broad particle size distribution of SnSb powders synthesized by titration is considered to be responsible for the improvement of cycling stability. The initial charge-discharge efficiency exceeding 80% has been obtained for the titration sample. The electrochemical reaction process of two kinds of synthesized SnSb composite electrodes was characterized by cyclic voltammetry and AC impedance techniques.
Chaoli Yin Hailei Zhao Hong Guo Xianliang Huang Weihua Qiu