The democracy of quark flavors is a well-motivated flavor symmetry, but it must be properly broken in order to explain the observed quark mass spectrum and flavor mixing pattern. We reconstruct the texture of flavor democracy breaking and evaluate its strength in a novel way, by assuming a parallelism between the Q=+2/3 and Q=-1/3 quark sectors and using a nontrivial parametrization of the flavor mixing matrix. Some phenomenological implications of such democratic quark mass matrices, including their variations in the hierarchy basis and their evolution from the electroweak scale to a super-high energy scale, are also discussed.
Linear alkylbenzene(LAB) will be used as solvent for the liquid scintillator in the central detector of Jiangmen Underground Neutrino Observatory. The sheer size of the detector imposes significant challenges and the necessity to further improve the optical transparency of high-quality LAB. In order to study high optical transparencies, we continuously improve our measurement setup and use monochromatic light to measure the attenuation lengths of LAB samples. Moreover, the effects of organic impurities on LAB samples are studied to understand their interaction mechanisms and further improve the optical transparency of LAB.