Co-seismic ground-surface deformation of the Yushu earthquake on April 14, 2010 is studied on the basis of interferometry principle by using InSAR images from ALOS PALSAR and ENVISAT ASAR pairs. The observed maximum line-of-sight displacement is 54 cm, which is equivalent to a sinistral strike slip of 180 cm on the surface. The location of macro-epicenter is very close to the epicenter determined by in situ investigation, suggesting that InSAR is an ideal tool for quick identification of the macro-epicenter, and thus for timely disaster assessment after a destructive earthquake.
Co-seismic line-of-sight displacements of the 2011 Mw9.0 Japan earthquake derived from InSAR data of Envisat ASAR, ALOS PALSAR and TerraSAR-X show a maximum value of about - 245cm to -221cm near the epicenter. This result is in good agreement with the result of GPS measurement. The ob- served displacement pattern suggests an earthquake-rupture zone over 500km long, with a ground-motion pat- tern in the vicinity of the northern segment more complex than that of the southern segment, possibly due to immediate aftershocks that occurred between satellite passes.
We use the average crustal structure of the CRUST1.0 model for the Tibetan Plateau to establish a realistic earth model termed as TC1 P, and data from the Global Land Data Assimilation System(GLDAS) hydrology model and Gravity Recovery and Climate Experiment(GRACE) data, to generate the hydrology signals assumed in this study. Modeling of surface radial displacements and gravity variation is performed using both TC1 P and the global Preliminary Reference Earth Model(PREM). Furthermore, inversions of the hydrology signals based on simulated Global Positioning System(GPS) and GRACE data are performed using PREM. Results show that crust in TC1 P is harder and softer than that in PREM above and below a depth of 15 km, respectively, causing larger differences in the computed load Love numbers and loading Green’s functions. When annual hydrology signals are assumed,the differences of the radial displacements are found to be as large as approximately0.6 mm for the truncated degree of 180; while for hydrology-trend signals the differences are very small. When annual hydrology signals and the trends are assumed, the differences in the surface gravity variation are very small. It is considered that TC1 P can be used to efficiently remove the hydrological effects on the monitoring of crustal movement. It was also found that when PREM is used inappropriately, the inversion of the hydrology signals from simulated annual GPS signals can only recover approximately 88.0% of the annual hydrology signals for the truncated degree of 180, and the inversion of hydrology signals from the simulated trend GPS signals can recover approximately 92.5% for the truncated degree of 90. However, when using the simulated GRACE data, it is possible to recover almost 100%. Therefore, in future, the TC1 P model can be used in the inversions ofhydrology signals based on GPS network data. PREM is also valid for use with inversions of hydrology signals from GRACE data at resolutions of approximately 220 km and larger.
Wang HanshengXiang LongweiWu PatrickJia LuluJiang LimingShen QiangSteffen Holger