A large amount of coal gangue from coal mining and processing is regarded as waste and usually stockpiled directly. In order to recycle the valuable elements from the coal gangue, an integrated process is proposed. The process consists of three steps: 1concentrating alumina from the coal gangue via activation roasting followed by alkali leaching of Si O2 which produces alumina concentrate for alumina extraction by the Bayer process; 2) synthesizing tobermorite whiskers from the filtrated alkali liquo containing silicate via a hydrothermal method and reusing excess caustic liquor; and 3) enriching titanium component from the Baye process residue by sulfuric acid leaching. Alumina concentrate with 69.5% Al_2O_3 and mass ratio of alumina to silica(A/S) of 5.9pure 1.1 nm tobermorite whisker and TiO_2-rich material containing 33% TiO_2 are produced, respectively, with the optimal parameters Besides, the actual alumina digestion ratio of alumina concentrate reaches 80.4% at 270 oC for 40 min in the Bayer process.
In pyrometallurgical process, Al-and Si-bearing minerals in iron and aluminum ores are easily transformed into sodium aluminosilicates in the presence of Na_2O constituents, which alters the leaching behaviors of Al_2O_3 and SiO_2. It was confirmed that sodium aluminosilicates with different phase compositions synthesized at various roasting conditions were effectively digested in the alkaline digestion process. Under the optimum conditions at temperature of 100–120°C, liquid-to-solid ratio(L/S) of 10:2 mL/g, caustic ratio of 4, and Na_2O concentration of 240 g/L, the actual and relative digestion ratio of Al_2O_3 from the synthesized sodium aluminosilicates reached maximums of about 65% and 95%, respectively, while SiO_2 was barely leached out. To validate the superior digestion property of sodium aluminosilicate generated via an actual process, the Bayer digestion of an Al_2O_3-rich material derived from reductive roasting of bauxite and comprising Na_(1.75) Al_(1.75) Si_(0.25)O_4 was conducted; the relative digestion ratio of Al_2O_3 attained 90% at 200°C.