您的位置: 专家智库 > >

国家自然科学基金(10731080A01010501)

作品数:6 被引量:5H指数:1
相关作者:陈文革洪毅更多>>
相关机构:华南理工大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学自动化与计算机技术自然科学总论更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 4篇理学
  • 1篇自动化与计算...
  • 1篇自然科学总论

主题

  • 1篇引理
  • 1篇映射
  • 1篇圆域
  • 1篇凸映射
  • 1篇泛函
  • 1篇NORMAL
  • 1篇SCHWAR...
  • 1篇SCHWAR...
  • 1篇SOME
  • 1篇CIRCUL...
  • 1篇COMPLE...
  • 1篇DOMAIN
  • 1篇DOMAIN...
  • 1篇FORMS
  • 1篇FORMUL...
  • 1篇FUNCTI...
  • 1篇HOLOMO...
  • 1篇INTEGR...
  • 1篇INVARI...
  • 1篇KERNEL

机构

  • 1篇华南理工大学

作者

  • 1篇洪毅
  • 1篇陈文革

传媒

  • 4篇Scienc...
  • 1篇Acta M...
  • 1篇中国科学:数...

年份

  • 1篇2015
  • 3篇2010
  • 2篇2008
6 条 记 录,以下是 1-6
排序方式:
Convex mappings on some circular domains
2010年
In this paper,we consider some circular domains.And we give an extension theorem for some normalized biholomorphic convex mapping on some circular domains.Especially,we discover the normalized biholomorphic convex mapping on some circular domains have the form f(z) =(f1(z1),...,fn(zn)),where fj:D → C are normalized biholomorphic convex mapping.
Hong YiChen WenGe
关键词:CIRCULARCONVEXMINKOWSKISCHWARZLEMMA
Poisson kernel and Cauchy formula of a non-symmetric transitive domain
2010年
In 1965, Lu Yu-Qian discovered that the Poisson kernel of the homogenous domain S m,p,q={Z∈Cm×m, Z1∈Cm×p,Z2 ∈Cq×m|2i1( Z-Z+)-Z1Z1′-Z2′Z2>0} does not satisfy the Laplace-Beltrami equation associated with the Bergman metric when S m,p,q is not symmetric. However the map T0:Z→Z, Z1→Z1 , Z2→Z2 transforms S m,p,q into a domain S I (m, m + p + q) which can be mapped by the Cayley transformation into the classical domains R I (m, m + p + q). The pull back of the Bergman metric of R I (m, m + p + q) to S m,p,q is a Riemann metric ds 2 which is not a Khler metric and even not a Hermitian metric in general. It is proved that the Laplace-Beltrami operator associated with the metric ds 2 when it acts on the Poisson kernel of S m,p,q equals 0. Consequently, the Cauchy formula of S m,p,q can be obtained from the Poisson formula.
LU Qi-Keng Institute of Mathematics, Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100190, China
关键词:POISSONKERNELCAUCHYFORMULA
Convex Mappings on Some Reinhardt Domains被引量:1
2008年
In this paper, we consider the following Reinhardt domains. Let M = (M1, M2,..., Mn) : [0,1] → [0,1]^n be a C2-function and Mj(0) = 0, Mj(1) = 1, Mj″ 〉 0, C1jr^pj-1 〈 Mj′(r) 〈 C2jr^pj-1, r∈ (0, 1), pj 〉 2, 1 ≤ j ≤ n, 0 〈 C1j 〈 C2j be constants. Define DM={z=(z1,z2,…,Zn)^T∈C^n:n∑j=1 Mj(|zj|)〈1}Then DM C^n is a convex Reinhardt domain. We give an extension theorem for a normalized biholomorphic convex mapping f : DM -→ C^n.
Yi HONG Wen Ge CHEN
On the lower bounds of the curvatures in a bounded domain被引量:1
2015年
Let KD(z, z) be the Bergman kernel of a bounded domain 7P in Cn and Sect (z, ) and Ricci (z, ) be the holomorphic sectional curvature and Ricci curvature of the Bergman metric ds2 = T T:)(z,N)dzCdz respectively at the point z E T with tangent vector . It is proved by constructing suitable minimal functions that where z ∈D1 D D2, D1 is a ball contained in D and D2 is a ball containing D.
LU Qi Keng
Holomorphic invariant forms of a bounded domain被引量:4
2008年
Given a complete ortho-normal system ? = (?0,?1,?2,…) of L 2 H( $ \mathcal{D} $ ), the space of holomorphic and absolutely square integrable functions in the bounded domain $ \mathcal{D} $ of ? n , we construct a holomorphic imbedding $ \iota _\phi :\mathcal{D} \to \mathfrak{F}(n,\infty ) $ , the complex infinite dimensional Grassmann manifold of rank n. It is known that in $ \mathfrak{F}(n,\infty ) $ there are n closed (μ, μ)-forms τμ (μ = 1,…,n) which are invariant under the holomorphic isometric automorphism of $ \mathfrak{F}(n,\infty ) $ and generate algebraically all the harmonic differential forms of $ \mathfrak{F}(n,\infty ) $ . So we obtain in $ \mathcal{D} $ a set of (μ, μ)-forms ι ? * τμ (μ = 1,…, n), which are independent of the system ? chosen and are invariant under the bi-holomorphic transformations of $ \mathcal{D} $ . Especially the differential metric ds 2 1 associated to the K?hler form ι ? * τ1 is a K?hler metric which differs from the Bergman metric ds 2 of $ \mathcal{D} $ in general, but in case that the Bergman metric is an Einstein metric, ds 1 2 differs from ds 2 only by a positive constant factor.
LU QiKeng Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
一些圆域上的凸映射扩充
2010年
在本文中,我们考虑了一些圆域.并且我们给出了这些圆域上的正规化双全纯凸映射的扩充定理.特别地,我们发现某些圆域上的正规化双全纯凸映射有形式.f(z)-(f_1(z_1),…,f_n(z_n)),其中f_j:D→C是双全纯凸映射.
洪毅陈文革
关键词:圆域MINKOWSKI泛函SCHWARZ引理
共1页<1>
聚类工具0