We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in Dy FeO3 single crystal. A giant rotating field entropy change of -ΔSM^R = 16.62 J/kg·K was achieved from b axis to c axis in bc plane at 5 K for a low field change of 20 k Oe. The large anisotropic magnetic entropy change is mainly accounted for the 4 f electron of rare-earth Dy^3+ ion. The large value of rotating field entropy change, together with large refrigeration capacity and negligible hysteresis, suggests that the multiferroic ferrite Dy FeO3 singlecrystal could be a potential material for anisotropic magnetic refrigeration at low field, which can be realized in the practical application around liquid helium temperature region.
According to density functional theory (DFT) using the plane wave base and pseudo-potential, we investigate the effects of the specific location of oxygen vacancy (Vo) in a (Ti,Co)06 distorted octahedron on the spin density and magnetic properties of Co-doped rutile Ti02 dilute magnetic semiconductors. Our calculations suggest that the Vo location has a significant influence on the magnetic moment of individual Co cations. In the case where two Co atoms are separated far away from each other, when the Vo is located at the equatorial site of a Co-contained octahedron, the ground state of the two Co cations is d6(t3g↑, t23g ↓) without any magnetic moment. However, if the Vo is located at the apical site, these two Co sites have different ground states and magnetic moments. The spin densities are also observed to be modified by the exchange coupling between the Co cations and the location of Vo. Some positive spin polarization is induced around the adjacent O ions.
The charge-trapping process, with HfO2 film as the charge-capturing layer, has been investigated by using in situ electron energy-loss spectroscopy and in situ energy-filter image under positive external bias. The results show that oxygen vacancies are non-uniformly distributed throughout the HfO2 trapping layer during the programming process. The distribution of the oxygen vacancies is not the same as that of the reported locations of the trapped electrons, implying that the trapping process is more complex. These bias-induced oxygen defects may affect the device performance characteristics such as the device lifetime. This phenomenon should be considered in the models of trapping processes.
Chao LiYuan YaoXi ShenYanguo WangJunjie LiChangzhi GuRicheng YuQi LiuMing Liu