The surface acoustic wave (SAW) propagating in a sample of steel is simulated by using finite element method (FEM). The waves are excited by a load function with propagation properties such as phase velocity disper- sion and wide bandwidth. A two-dimensional model consisting of surface defects loaded with a wideband 50--200 M Hz and short time 0.1 gs displacement function is investigated in the time and frequency domains. By transient dy- namic analysis, Fourier transform and dispersion calculation, snapshots of propagating wave and responses from sens- ing points are presented. It is indicated that this supervision approach is sensitive to the surface cracks and reflections.
Ground textures seriously interfere with the exact identification of grinding damage. The common nondestructive testing techniques for engineering ceramics are limited by their difficulty and cost. Therefore, this paper proposes a global image reconstruction scheme in ground texture surface using Fourier transform (FT). The lines associated with high-energy frequency components in the spectrum that represent ground texture information can be detected by Hough transform (HT), and the corresponding high-energy frequency components are set to zero. Then the spectrum image is back-transformed into the spatial domain image with inverse Fourier transform (IFT). In the reconstructed image, the main ground texture information has been removed, whereas the surface defects information is preserved. Finally, Canny edge detection is used to extract damage image in the reconstructed image. The experimental results of damage detection for the ground texture surfaces of engineering ceramics have shown that the proposed method is effective.