The line of sight (LOS) wind velocity can be determined from the incoherent Doppler lidar backscattering signals. Noise and interference in the measurement greatly degrade the inversion accuracy. In this paper, we apply the discrete wavelet denoising method by using biorthogonal wavelets and adopt a distance-dependent thresholds algorithm to improve the accuracy of wind velocity measurement by incoherent Doppler lidar. The noisy simulation data are processed and compared with the true LOS wind velocity. The results are compared by the evaluation of both the standard deviation and correlation coefficient. The results suggest that wavelet denoising with distance-dependent thresholds can considerably reduce the noise and interfering turbulence for wind lidar measurement.
In this paper, we present a method of ROV based image processing to restore underwater blurry images from the theory of light and image transmission in the sea. Computer is used to simulate the maximum detection range of the ROV under different water body conditions. The receiving irradiance of the video camera at different detection ranges is also calculated. The ROV’s detection performance under different water body conditions is given by simulation. We restore the underwater blurry images using the Wiener filter based on the simulation. The Wiener filter is shown to be a simple useful method for underwater image restoration in the ROV underwater experiments. We also present examples of restored images of an underwater standard target taken by the video camera in these experiments.
A mobile incoherent Doppler lidar system has been experimentally demonstrated to be able to transmit reliable single frequency operation laser pulse, even after truck transit and in very high vibration environments. The linewidth of the injection-seeded pulse Nd:YAG laser can be measured by means of an I2 molecular filter. And, lidar validation experiments demonstrated the feasibility and capability of measuring wind field by the Mie-Rayleigh Doppler wind lidar. The un-certainty of measured wind speed is 0.985m/s in the altitude range from 2 to 4 km.
This note reports a new type of incoherent pulse laser Doppler lidar velocimeter with iodine molecular filter as a frequency discriminator. Its transmitter subsystem applies a Nd:YAG pulse laser which is injected with a single longitudinal-mode diode pumped continuous seeder laser. The field experiment proved that this velocimeter measurement results are consistent with those measured by photoelectric velocimeter. Measurements of eight different velocities show that the standard deviation is 0.56m/s, the range resolution is 3.75m.