An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to be convex, and all coefficients of the system are allowed to be random. A variational formula for the functional in a given control process direction is derived, by the Hamiltonian and associated adjoint system. As an application, a global stochastic maximum principle of Pontraygins type for the optimal controls is established.
This paper is mainly concerned with the solutions to both forward and backward mean-field stochastic partial differential equation and the corresponding optimal control problem for mean-field stochastic partial differential equation. The authors first prove the continuous dependence theorems of forward and backward mean-field stochastic partial differential equations and show the existence and uniqueness of solutions to them. Then they establish necessary and sufficient optimality conditions of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, the authors apply stochastic maximum principles to study the infinite-dimensional linear-quadratic control problem of mean-field type. Further, an application to a Cauchy problem for a controlled stochastic linear PDE of mean-field type is studied.