Prof.Xiong Yujie’s laboratory at the School of Chemistry and Materials Science,University of Science and Technology of China,together with Profs.Jiang Jun and Zhang Qun,reported new progress in the design of hybrid photocatalysts for water splitting,which was published in Angew Chem Int Ed(2014,53(20):5107(11).
The double perovskite oxides Sr2Mg1-xF exMoO6-δ were investigated as catalysts for the methane oxidation.The structural properties of catalysts were characterized in detail by X-ray diffraction,X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.The catalytic property was strongly influenced by the Fe substitution.The relation between catalytic performance and the degree of Fe substitution was examined with regard to the structure and surface characteristics of the mixed oxides.The Fe-containing catalysts exhibited higher activity attributable to the possible(Fe2+,Mo6+) and (Fe3+,Mo5+)valency pairs,and the highest activity was observed for Sr2Mg0.2Fe0.8MoO6-δ.The enhancement of the catalytic activity may be correlated with the Fe-relating surface lattice oxygen species and was discussed in view of the presence of oxygen vacancies.
Chen LiWendong W angCongying XuYuanxu LiuBO HeChusheng Chen
Sum frequency generation vibrational spectroscopy(SFG-VS)has been demonstrated to be a powerful technique to study the interfacial structures and interactions of biomolecules at the molecular level.Yet most previous studies mainly collected the SFG spectra in the frequency range of 1500–4000 cm-1,which is not always sufficient to describe the detailed interactions at surface and interface.Thorough knowledge of the complex biophysicochemical interactions between biomolecules and surface requires new ideas and advanced experimental methods for collecting SFG vibrational spectra.We introduced some advanced methods recently exploited by our group and others,including(1)detection of vibration modes in the fingerprint region;(2)combination of chiral and achiral polarization measurements;(3)SFG coupled with surface plasmon polaritons(SPPs);(4)imaging and microscopy approaches;and(5)ultrafast time-resolved SFG measurements.The technique that we integrated with these advanced methods may help to give a detailed and high-spatial-resolution 3D picture of interfacial biomolecules.
We investigate the fluorescence quenching of Rhodamine 6G (R6G), a well known laser dye with a high fluorescence quantum yield, by as-synthesized graphene oxide (GO) in aqueous solution, which is found to be rather efficient. By means of steady-state and time-resolved fluorescence spectroscopy combined with detailed analysis about the linear absorption vari- ation for this R6G-GO system, the pertinent quenching mechanism has been elucidated to be a combination of dynamic and static quenching. Possible ground-state complexes be- tween R6G and GO during the static quenching have also been suggested. Furthermore, the direction of photoindueed electron transfer between R6G and GO has been discussed.
To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.
Dehydration of a surface is the first step for the interaction between biomolecules and the surface. In this study, we systemati- cally investigated the influence of cholesterol analog 6-ketocholestanol (6-KC) on the dehydration of model cell membrane, using sum frequency generation vibrational spectroscopy. In pure DI water environment, two separate dehydration dynamic components were observed in neutrally charged and isotopically labeled 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and positively charged 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine(chloride salt) (DMEPC) bilayer: a large-amplitude fast component and a small-amplitude slow component, which originated from the water molecules with a weak and a strong water-membrane bound strengths, respectively. Dehydration of a negatively charged mixed DMPC/DMPG bilayer lead to the membrane-bound water being reorganized to ordered structures quickly. It is evident that the water-membrane bound strengths depend largely on the charge status of the lipid and has an order of neutrally charged membrane〈〈positively charged mem- brane〈〈negatively charged membrane. In an ionic environment, KC1 solution can not only dehydrate DMPC bilayer, but also prevent the 6-KC fiom further dehydrating this model cell membrane. We observed that the dehydration dynamics behavior of DMPC bilayer in the presence of the chaotropic anions is similar to that of the negatively charged DMPG bilayer because of the penetration of chaotropic anions into the DMPC bilayer. The degree of dehydration difficulty in kosmotropic anions fol- lows a Hofmeister series and linearly correlates with the hydration Gibbs free energy of the anions. Our results provide a molecular basis for the interpretation of the Hofmeister effect of kosmotropic anions on ion transport proteins.