A stochastic nonlinear dynamical model is proposed to describe the vibration of rectangular thin plate under axial inplane excitation considering the influence of random environment factors. Firstly, the model is simplified by applying the stochastic averaging method of quasi-nonintegrable Hamilton system. Secondly, the methods of Lyapunov exponent and boundary classification associated with diffusion process are utilized to analyze the stochastic stability of the trivial solution of the system. Thirdly, the stochastic Hopf bifurcation of the vibration model is explored according to the qualitative changes in stationary probability density of system response, showing that the stochastic Hopf bifurcation occurs at two critical parametric values. Finally, some explanations are given in a simple way on the potential applications of stochastic stability and bifurcation analysis.
This paper focuses on theoretical and experimental investigations of planar nonlinear vibrations and chaotic dynamics of an L-shape beam structure subjected to fundamental harmonic excitation,which is composed of two beams with right-angled L-shape.The ordinary differential governing equation of motion for the L-shape beam structure with two-degree-of-freedom is firstly derived by applying the substructure synthesis method and the Lagrangian equation.Then,the method of multiple scales is utilized to obtain a four-dimensional averaged equation of the L-shape beam structure.Numerical simulations,based on the mathematical model,are presented to analyze the nonlinear responses and chaotic dynamics of the L-shape beam structure.The bifurcation diagram,phase portrait,amplitude spectrum and Poincare map are plotted to illustrate the periodic and chaotic motions of the L-shape beam structure.The existence of the Shilnikov type multi-pulse chaotic motion is also observed from the numerical results.Furthermore, experimental investigations of the L-shape beam structure are performed,and there is a qualitative agreement between the numerical and experimental results.It is also shown that out-of-plane motion may appear intuitively.
Dong-Xing Cao·Wei Zhang·Ming-Hui Yao College of Mechanical Engineering,Beijing University of Technology, Beijing 100124,China