Complex interactions of plates with ambient fluid are common in daily lives,e.g.flags flapping in wind,aerofoils oscillating in flow.Recently,the feasibility to harvest energy using the flutter motion has been demonstrated.The objectives of this study are to systematically explore the effects of the material damping on flag flutter,and then to study the energy interchange between the fluid and the flag.In this study,a two-dimensional model was developed.Three dimensionless parameters govern the system,i.e.the mass ratio between the structure and the fluid,the dimensionless fluid velocity and the dimensionless material damping.Results show that the critical velocity increases with the increase of the material damping.The oscillation frequency of the flag decreases with the increase of the material damping,and the time-averaged energy dissipation rate initially increases and then decreases.The increase of the material damping causes the transition of the system from a higher frequency oscillating state to a lower frequency oscillating state,and from a chaotic state to a periodic state.
采用和谐的加权平均通量(Weighted Average Flux,简称WAF)算法,研究了浅水波方程的间断解及污染物传输问题。该算法采用WAF格式和HLLC Riemann求解器近似单元边界数值通量,中心差分格式离散地形源项,然后理论上证明了该算法是和谐的。最后利用WAF算法对非平底地形上浅水波间断解及污染物传输问题进行数值计算,精确地捕捉到了间断解和污染物运动过程,结果表明该算法满足守恒性,具有高分辨率、无振荡及捕捉污染物运动边界的能力。