Detailed models of combustion instability based on chemistry dynamics are developed. The results show that large activation energy goes against the combustion stability. The heat transfer coefficient between the wall and the combust gas is an important bifurcation parameter for the combustion instability. The acoustics modes of the chamber are in competition and cooperation with each other for limited vibration energy. Thermodynamics criterion of combustion stability can be deduced from the nonlinear thermodynamics. Correlations of the theoretical results and historical experiments indicate that chemical kinetics play a critical role in the combustion instability.
Combustion instability of O2/kerosene, O2/kerosene/hydrogen, and O2/kerosene/hydro- gen spray flame is numerically studied. The numerical results of combustion self-oscillation are consistent with the historical experiments. Hydrogen is helpful to stabilizing oxygen/hydrocarbon combustion. High gas injecting velocity of the coaxial injector would increase the combustion stability. Contrary to the former expectation, the most sensitive region for combustion instability is not where the heat releases most intensely but is the low-temperature premixed region near the injectors. According to the simulation, the technology steps, such as adding catalyzer to decrease the reaction activity energy, or improving the injector design to reduce the premixed low temperature region, would improve the combustion stability.