领域适应学习是一种新颖的解决先验信息缺少的模式分类问题的有效方法,最大化地缩小领域间样本分布差是领域适应学习成功的关键因素之一,而仅考虑领域间分布均值差最小化,使得在具体领域适应学习问题上存在一定的局限性.对此,在某个再生核Hilbert空间,在充分考虑领域间分布的均值差和散度差最小化的基础上,基于结构风险最小化模型,提出一种领域适应核支持向量学习机(Kernel support vector machine for domain adaptation,DAKSVM)及其最小平方范式,人造和实际数据集实验结果显示,所提方法具有优化或可比较的模式分类性能。
针对现有模式分类方法不能较好地保持数据空间的局部流形信息或差异信息等问题,提出一种基于流形学习的局部保留最大信息差v-支持向量机(Locality-preserved maximum information variance v-support vector machine,v-LPMIVSVM).对于模式分类问题,v-LPMIVSVM引入局部同类离散度和局部异类离散度概念,分别体现输入空间局部流形结构和局部差异(或判别)信息,通过最小化局部同类离散度和最大化局部异类离散度,优化分类器的投影方向.同时,v-LPMIVSVM采用适于流形数据的测地线距离来度量数据点对间的相似性,以更好地反映流形数据的本质结构.人造和实际数据集实验结果显示所提方法具有良好的泛化性能.
领域适应(或跨领域)学习旨在利用源领域(或辅助领域)中带标签样本来学习一种鲁棒的目标分类器,其关键问题在于如何最大化地减小领域间的分布差异.为了有效解决领域间特征分布的变化问题,提出一种三段式多核局部领域适应学习(multiple kernel local leaning-based domain adaptation,简称MKLDA)方法:1)基于最大均值差(maximum mean discrepancy,简称MMD)度量准则和结构风险最小化模型,同时,学习一个再生多核Hilbert空间和一个初始的支持向量机(support vector machine,简称SVM),对目标领域数据进行初始划分;2)在习得的多核Hilbert空间,对目标领域数据的类别信息进行局部重构学习;3)最后,利用学习获得的类别信息,在目标领域训练学习一个鲁棒的目标分类器.实验结果显示,所提方法具有优化或可比较的领域适应学习性能.