Based on Remote Sensing (RS), Geographic Information System (GIS), and combining Principal Component Analysis, this paper designed a numerical integrated evaluation model for mountain eco-environment on the base of grid scale. Using this model, we evaluated the mountain eco-environmental quality in a case study area-the upper reaches of Minjiang River, and achieved a good result, which accorded well with the real condition. The study indicates that, the integrated evaluation model is suitable for multi-layer spatial factor computation, effectively lowing man's subjective influence in the evaluation process; treating the whole river basin as a system, the model shows full respect to the circulation of material and energy, synthetically embodies the determining impact of such natural condition as water-heat and landform, as well as human interference in natural eco-system; the evaluation result not only clearly presents mountainous vertical distribution features of input factors, but also provides a scientific and reliable thought for quantitatively evaluating mountain eco-environment.
LI AinongWANG AngshengHE XiaorongFENG WenlanZHOU Wancun