The detection range of underwater laser imaging technology achieves 4—6 times of detection range of conventional camera in intervening water medium, which makes it very promising in oceanic research, deep sea exploration and robotic works. However, the special features in underwater laser images, such as speckle noise and non-uniform illumination, bring great difficulty for image segmentation. In this paper, a novel saliency motivated pulse coupled neural network(SM-PCNN) is proposed for underwater laser image segmentation. The pixel saliency is used as external stimulus of neurons. For improvement of convergence speed to optimal segmentation, a gradient descent method based on maximum two-dimensional Renyi entropy criterion is utilized to determine the dynamic threshold. On the basis of region contrast in each iteration step, the real object regions are effectively distinguished,and the robustness against speckle noise and non-uniform illumination is improved by region selection. The proposed method is compared with four other state-of-the-art methods which are watershed, fuzzy C-means, meanshift and normalized cut methods. Experimental results demonstrate the superiority of our proposed method to allow more accurate segmentation and higher robustness.
This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor. First, the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image, and the relevant position information of objects is extracted and determined. An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method. Second, a representation of region information is created in light of the Gaussian particle filter. The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness. Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed. They show that the proposed method can detect and track the moving objects underwater online, and it is effective and robust.
This paper describes a new framework for detection and tracking of underwater pipeline, which includes software system and hardware system. It is designed for vision system of AUV based on monocular CCD camera. First, the real-time data flow from image capture card is pre-processed and pipeline features are extracted for navigation. The region saturation degree is advanced to remove false edge point group after Sobel operation. An appropriate way is proposed to clear the disturbance around the peak point in the process of Hough transform. Second, the continuity of pipeline layout is taken into account to improve the efficiency of line extraction. Once the line information has lbeen obtained, the reference zone is predicted by Kalman filter. It denotes the possible appearance position of the pipeiine in the image. Kalman filter is used to estimate this position in next frame so that the information of pipeline of each frame can be known in advance. Results obtained on real optic vision data in tank experiment are displayed and discussed. They show that the proposed system can detect and track the underwater pipeline online, and is effective and feasible.
A method of underwater simultaneous localization and mapping (SLAM) based on forward-looking sonar was proposed in this paper. Positions of objects were obtained by the forward-looking sonar, and an improved association method based on an ant colony algorithm was introduced to estimate the positions. In order to improve the precision of the positions, the extended Kalman filter (EKF) was adopted. The presented algorithm was tested in a tank, and the maximum estimation error of SLAM gained was 0.25 m. The tests verify that this method can maintain better association efficiency and reduce navigatioJ~ error.
A method of underwater simultaneous localization and mapping(SLAM)based on on-board looking forward sonar is proposed.The real-time data flow is obtained to form the underwater acoustic images and these images are pre-processed and positions of objects are extracted for SLAM.Extended Kalman filter(EKF)is selected as the kernel approach to enable the underwater vehicle to construct a feature map,and the EKF can locate the underwater vehicle through the map.In order to improve the association effciency,a novel association method based on ant colony algorithm is introduced.Results obtained on simulation data and real acoustic vision data in tank are displayed and discussed.The proposed method maintains better association effciency and reduces navigation error,and is effective and feasible.