This paper presents an FBCRI(feedback based compositional rule of inference)based novel path planning method to satisfy the requirements of real-time navigation,smoothness optimization and probabilistic obstacle avoidance.With local path-searching behaviors in regional ranges and global goal-seeking behaviors in holistic ranges,the method infers behavior weights using fuzzy reasoning embedded with feedback,and then coordinates the behaviors to generate new reference waypoints.In view of the deterministic decisions and the uncertain states of a UAV(unmanned air vehicle),chance constraints are adopted to probabilistically guarantee the UAV’s safety at a required level.Simulation results in representative scenes prove that the method is able to rapidly generate convergent paths in obstacle-rich environments,as well as highly improve the path quality with respect to smoothness and probabilistic safety.
基于快速扩展随机树(rapidly exploring random tree,RRT)的运动规划算法,通过随机采样的方式探索未知任务空间,具有概率完备性和较高的计算效率.该类算法在应用于无人机运动规划时必须对飞行距离、过程安全性和航路平滑度进一步优化.针对这一问题,首先对威胁环境、无人机运动学性能和探测能力建模,然后根据飞行特征设计了随机采样、威胁规避、路径可跟踪性以及全局与局部平滑性等优化策略,并构建快速平滑收敛RRT(quick and smooth convergence RRT,QS-RRT),最后以此为基础分别提出了面向已知和未知任务空间的无人机运动规划算法.仿真结果表明,该算法能够在保证飞行路径收敛性、安全性及其规划效率的基础上,有效缩短飞行距离,改善航路的可跟踪性和平滑度,增强在实际飞行过程中的可操作性.此外,该算法还易于在航路优化效果和规划效率之间权衡,增强了对不同规划任务需求的适应性.
<正>In this paper,the notion of near-controllability is established for nonlinear systems.This notion includes ...
TIE Lin,CAI Kai-Yuan School of Automation Science and Electrical Engineering,Beijing University of Aeronautics and Astronautics, Beijing 100191,P.R.China
This paper investigates the boost phase's longitudinal autopilot of a ballistic missile equipped with thrust vector control. The existing longitudinal autopilot employs time-invariant passive resistor-inductor-capacitor (RLC) network compensator as a control strategy, which does not take into account the time-varying missile dynamics. This may cause the closed-loop system instability in the presence of large disturbance and dynamics uncertainty. Therefore, the existing controller should be redesigned to achieve more stable vehicle response. In this paper, based on gain-scheduling adaptive control strategy, two different types of optimal controllers are proposed. The first controller is gain-scheduled optimal tuning-proportional-integral-derivative (PID) with actuator constraints, which supplies better response but requires a priori knowledge of the system dynamics. Moreover, the controller has oscillatory response in the presence of dynamic uncertainty. Taking this into account, gain-scheduled optimal linear quadratic (LQ) in conjunction with optimal tuning-compensator offers the greatest scope for controller improvement in the presence of dynamic uncertainty and large disturbance. The latter controller is tested through various scenarios for the validated nonlinear dynamic flight model of the real ballistic missile system with autopilot exposed to external disturbances.