我国具有丰富的潮流能资源,但是存在潮流流速偏低、难以高效利用等问题。潮流能水轮机变桨距技术的利用,可有效提高潮流能资源利用效率。以提高潮流能水轮机高效获能为目标,分析了水轮机叶片桨距角对潮流能水轮机获能的影响规律,研究了水轮机变桨距技术原理及控制策略。在20 k W潮流能水轮机中运用了电动变桨距技术,根据潮流流速的不同,使用最大功率点追踪控制算法控制桨距角,并对机组运行过程进行实时测试。机组运行数据表明,与非变桨水轮机相比,变桨式潮流能水轮机可有效提高其获能效率。
Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2x 105 and 0.01 s are se- lected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coeffi- cients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analy- sis of the vertical tidal stream turbine.
LIU ZhenQU HengliangSHI HongdaHU GexingHYUN Beom-Soo