The effects of a pulsed magnetic field (PMF) on the microsegregation of solute elements during directional solidification of a Ni-based single crystal superalloy were experimentally investigated, and the results show that the PMF significantly affects the microsegregation of Al, Ti, Co, Mo and W elements in the alloy. However, the distribution behavior differs for both positive and negative segregation elements. With the PMF, the microsegregation of negative segregation elements, Co and W, was restrained effectively, while that of positive segregation elements, A1, Ti and Mo, was aggravated. A segregation model was estab- lished to reveal the distribution mechanism of the elements with PME It is considered that, under the action of PME the jumping of solute atoms from the liquid phase to solid phase is hindered, but the jumping of solute atoms from the solid phase into liquid phase is promoted during solidification. As a result, the effective distribution coefficient of the solute atoms is reduced, which leads to the reduction of microsegregation of negative segregation elements and aggravation of microsegregation of positive segregation elements.
The grain refinement of superalloy IN718 under the action of low voltage pulsed magnetic field was investigated. The experimental results show that fine equiaxed grains are acquired under the action of low voltage pulsed magnetic field. The refinement effect of the pulsed magnetic field is affected by the melt cooling rate and superheating. The decrease of cooling rate and superheating enhance the refinement effect of the low voltage pulsed magnetic field. The magnetic force and the melt flow during solidification are modeled and simulated to reveal the grain refinement mechanism. It is considered that the melt convection caused by the pulsed magnetic field, as well as cooling rate and superheating contributes to the refinement of solidified grains.
A numerical model for the unsteady flow under a pulsed magnetic field of a solenoid is developed, in which magnetohydrodynamic flow equations decouple into a transient magnetic diffusion equation and unsteady Navier–Stokes equations in conjunction with two equations of the k–ε turbulent model. A Fourier series method is used to implement the boundary condition of magnetic flux density under multiple periods of a pulsed magnetic field (PMF). The numerical results are compared with the theoretical or experimental results to validate the model under a time-harmonic magnetic field; it is found that the toroidal vortex pair is the dominating structure within the melt flow under a PMF. The velocity field of a molten melt is in a quasi-steady state after several periods; changing the direction of the electromagnetic force causes the vibration of the melt surface under a PMF.