We investigate the dynamics of correlations for two-parameter qubit--qutrit states under various local decoherence channels including depalising, phase-flip, bit- and trit-flip, bit- and trit-phase-flip, and depolarizing channels. We find that, under certain conditions, the classical: correlations may not be affected by the noise or decay monotonically. The quantum correlations measured by measurement-induced disturbance (MID) show three types of dynamical behaviors: (i) monotonic 'decay to zero, (ii) monotOniC decay to a nonzero steady value, (iii) increase from zero and then decrease to zero in a monotonic way. Consequently, we find that, differing from the dynamics of entanglement, the present classical and quantum correlations do not reveal sudden death behavior.
Quantum computation requires coherently controlling the evolutions of qubits.Usually,these manipulations are implemented by precisely designing the durations(such as theπ-pulses)of the Rabi oscillations and tunable interbit coupling.Relaxing this requirement,herein we show that the desired population transfers between the logic states can be deterministically realized(and thus quantum computation could be implemented)both adiabatically and non-adiabatically,by performing the duration-insensitive quantum manipulations.Our proposal is specifically demonstrated with the surface-state of electrons floating on the liquid helium,but could also be applied to the other artificially controllable systems for quantum computing.