科学有效地预测水质对于水环境的可持续发展和人类健康具有重要意义,为此以固原市某黄河断面的水质监测数据为研究对象,提出了基于指标客观性的权重赋权(Criteria Importance Though Intercriteria Correlation,CRITIC)法和改进的秃鹰搜索(Improved Bald Eagle Search,IBES)算法优化双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)的组合水质等级预测模型。首先,采用CRITIC法确定各水质指标的权重,加权求和获得一项综合水质指标,从而提出一种改进的水质评价指标体系,以为BiLSTM提供更丰富、更可靠的水质特征信息。其次,在训练过程中引入Logistic映射和莱维飞行策略,并设计交叉共享及准反向搜索策略优化秃鹰搜索(Bald Eagle Search,BES)算法,以提升其种群多样性,增强寻优能力。最后,通过IBES算法迭代寻找BiLSTM的最佳学习率、隐藏层节点数以及正则化系数的超参数组合,进一步提高其预测水平。结果显示:与IBES-BiLSTM、BES-BiLSTM、GA-BiLSTM、PSO-BiLSTM和BiLSTM等模型相比,CRITIC-IBES-BiLSTM模型进行水质等级预测的准确率、精准率、召回率及F_(1)均最高,且具有更好的稳定性。
现有的面向数据流的高效用模式挖掘方法局限性之一在于假定数据都带有正的效用值,且在挖掘过程中使用效用列表会消耗大量的时间和内存。为了解决以上问题,首次提出在数据流中挖掘含负项的高效用模式挖掘算法,在算法中设计了一种新颖的列表索引结构(list index structure,LIS),LIS包括数据段和索引段,依据索引段中的索引值以及项集中的正负效用值,在滑动窗口中可快速访问或更新数据段并及时剪枝,有效挖掘含负项的高效用模式,以此来提升算法的时空性能。进行了广泛的实验评估来验证算法的效率,实验结果表明,提出算法在内存消耗及运行时间方面均表现出良好的性能。