The excited vibrational states of the ozone molecule are studied using the vibrationally self-consistent field-configuration interaction (SCF-CI) procedure. In order to reproduce the observed vibrational band origins well, the potential energy surface for the electronic ground state of O3 is optimized using the recently observed vibrational band origins up to 4400 cm-1. The root-mean-square error of this fitting for the 30 observed vibrational energy levels is 0.47 cm-1.All the calculated band origins are within 1.0 cm-1 of the observed values.
用ab initio MRSDCI/6-311G(2 df,2 Pd)方法研究了Li_2H分子电子基态的势能面,计算了285个几何构型点的势能值,并采用Simons-Parr-Finlan展开式对这些势能值进行了拟合,得到均方差X^2等于4.64×10^(-6)(hartree^2).Li_2H分子电子基态的平衡几何构型为R_e=0.172nm,