Based on the principle of information theory, a novel scheme of unequal-interval frequency-hopping (FH) systems was proposed. For cases of spectrum overlapping systems and non-overlapping systems, the implementation methods were presented and the security performances were discussed theoretically. Firstly, the definitions of absolute and relative key amounts of FH systems, equal-interval and unequal-interval FH systems were given. Then, the absolute key amount and relative key amount were analyzed for equal-interval and unequal-interval FH systems. The results indicated that the absolute key amount had become the key point in improving the security and secrecy of FH systems, especially in today's epoch of highly developed computer science and IC design technology. Theoretical analysis and practical examples showed that the absolute key amount of unequal-interval FH systems was generally over two orders larger than that of equal-interval ones when spectrum overlapping was allowable. Therefore, there was great superiority in enhancing the security and secrecy for the scheme mentioned.