桑彦彬
- 作品数:22 被引量:15H指数:2
- 供职机构:中北大学理学院更多>>
- 发文基金:国家自然科学基金山西省自然科学基金山东省自然科学基金更多>>
- 相关领域:理学更多>>
- 一类带有p(x)-Laplacian算子的障碍问题多解的存在性
- 2021年
- 考虑了一类带有p(x)-Laplacian算子的Neumann型变分半变分不等式障碍问题,通过对位势函数作一些合理假设后,运用非光滑三个点临界点理论2,得到了此问题三个解的存在性.
- 常高桑彦彬
- 关键词:局部LIPSCHITZ函数
- 具有变号权函数的分数阶p-q-Laplacian方程组的多重解
- 2022年
- 考虑一类具有凹凸非线性项和变号权函数的分数阶p-q-Laplacian方程组,借助于Nehari流形和Ekeland变分原理,证明当参数(λ,μ)属于R^(n)的某个集合时,该方程组至少存在两个非平凡解。
- 李春平桑彦彬
- 对称空间中满足ψ-弱压缩条件及公共极限值域性质的4个非自映射不动点定理
- 2016年
- 利用公共极限值域性质,在映射满足ψ-弱压缩条件情况下,建立了一类在对称空间中2对非自映射公共不动点的存在定理.
- 常慧杰桑彦彬
- 关键词:公共不动点
- 一类非线性m点边值问题正解的存在性与多解性被引量:3
- 2006年
- 考察了非线性方程m点边值问题u″(t)+a(t)u′(t)+b(t)u(t)+f(t,u)=0,0≤t≤1,u(0)=0,u(1)=∑m-2i=1αiu(ξi),的正解的存在性与多解性.设a∈C[0,1],b∈C([0,1],(-∞,0));设1(t)为线性方程边值问题u″(t)+a(t)u′(t)+b(t)u(t)=0,0≤t≤1,u(0)=0,u(1)=1,的唯一正解.其中ξi∈(0,1),αi∈(0,+∞)为满足∑m-2i=1αi1(ξi)<1的常数,i∈{1,2,…,m-2}.通过考察f在有界集上的性质,运用Krasnosel'skii锥拉伸与锥压缩型不动点定理及格林函数的性质,获得了其正解的存在性与多解性,推广和改进了已有的相关结果.
- 桑彦彬阎晋强田冲张克梅
- 关键词:M点边值问题正解不动点定理
- 带有Hardy项的奇异p-重调和方程正解的唯一性被引量:1
- 2019年
- 研究了一类带有 Hardy 项的奇异 p-重调和方程,运用极小化方法获得了该问题正解的存在唯一性。
- 桑彦彬陈娟任艳
- 关键词:HARDY正解存在唯一性
- 具有临界Sobolev-Hardy项的拟线性p-重调和方程解的存在性被引量:1
- 2019年
- 为了研究一类带有Hardy项和多临界Sobolev-Hardy指数的拟线性p-重调和方程解的存在性,借助于Ekeland变分原理,给出上述问题解的存在性定理。首先,将方程对应的变分泛函定义在约束集M_η(通常称为Nehari流形)上,使得该泛函下方有界。其次,利用纤维映射将上述集合M_η划分为M_η^+,M_η~0和M_η^-等3部分,并分别研究每部分的性质,证明了M_η^+和M_η^-中泛函极小值的存在性。最后,利用隐函数定理,得到在参数满足一定条件下,存在极小化序列{u_n},满足(PS)_c条件,从而完成了该方程解的存在性的证明。所得结论可为判定解的结构和性质提供理论依据。
- 任艳桑彦彬
- 关键词:非线性泛函分析EKELAND变分原理
- 几类非线性常微分方程边值问题的可解性
- 对于线性二阶常微分方程多点边值问题的研究是由Il'in和Moiseev首先开始的.Gupta研究了一类非线性常微分方程三点边值问题.此后,对更一般的非线性常微分方程多点边值问题解的存在性的研究,受到了广泛的关注。本文考察...
- 桑彦彬
- 关键词:三点边值问题非线性常微分方程正解不动点定理锥理论
- 文献传递
- 一类分数阶q型差分边值问题中的混合单调方法被引量:1
- 2019年
- 为了研究一类非线性分数阶q型差分方程边值问题非平凡解的存在唯一性。首先,在一个新的集合上定义一个新概念,再利用正规锥的定义,建立了2个混合单调算子唯一不动点的存在性,获得了线性分数阶q型边值问题的Green函数,并且对Green函数的上下界进行了估计,由此可得到特解的表达形式。其次,运用抽象定理,讨论了符合定理条件的非线性项,建立了上述问题的唯一解的存在性,并获得逼近唯一解的迭代序列,进而证明了分数阶q型差分方程边值问题非平凡解的存在唯一性。最后,通过列举一个例子来说明主要定理和结果的有效性。研究结果表明,定理条件得证且方程组边值问题非平凡解满足存在唯一性。研究方法在理论证明和边值问题方面都得到了良好的结果,对探究其他边值问题具有一定的借鉴意义。
- 韩伟孟晓宇桑彦彬
- 关键词:非线性偏微分方程混合单调算子存在唯一性非平凡解
- Carathéodory条件下三阶半正边值问题的正解
- 2005年
- 不要求非线性项f(t,u)连续且下方有界,在f(t,u)满足Carathéodory条件下,讨论了三阶半正边值问题u+λf(t,u)=0,0t1,u(0)=u′(0)=u″(1)=0.当λ>0且充分小时正解的存在性,应用的工具为锥上的不动点.
- 桑彦彬张克梅刘茂省
- 关键词:正解
- 一类奇异非线性三点边值问题的多重正解
- 2007年
- 利用锥映射的不动点指数定理,建立了一类奇异三点边值问题多个正解的存在性定理.改进和推广了相关结果.
- 高岩朱宗元桑彦彬
- 关键词:不动点指数定理正解