The relationship between Ca 2+ and ethylene response was investigated through analyzing the effect of Ca 2+ on the response to ethylene in etiolated tomato (Lycopersicon esculentum Mill cv. Lichun) seedling grown in darkness. When the etiolated tomato seedlings were treated with different concentrations of Ca 2+, the 'triple response' phenotype, ethylene production, the expression of ethylene receptor gene NEVER-RIPE (NR) and the content of cytosolic CaM were determined. With the concentration of Ca 2+ in the culture medium increasing from 0 mmol/L to 3.8 mmol/L, the 'triple response' phenotype of etiolated tomato seedling was correspondingly strengthened; meanwhile the ethylene production, the amount of NR gene expression and the concentration of CaM increased respectively. However, when the concentration of Ca 2+ was increased from 3.8 mmol/L to 10 mmol/L, the phenotype of 'triple response', ethylene production, NR gene expression, and the CaM content didn't increase further, but decreased consequently. The results indicated that the effect of Ca 2+ on the ethylene triple response in etiolated tomato seedling was relevant to ethylene biosynthesis and ethylene receptor gene expression which were influenced by applied Ca 2+, and these effects might be mediated through the change of CaM concentration in plant cell.