Cavity perturbation method was used to determine the dielectric properties (ε′,ε″, and tanδ) of zinc oxide dust in different apparent densities. The process was conducted to study the microwave-absorption properties of zinc oxide dust and the feasibility of microwave roasting zinc oxide dust to remove fluorine and chlorine. The dielectric constant, dielectric loss, and loss tangent were proportional to the apparent density of zinc oxide dust. The effects of sample mass and microwave power on the temperature increase characteristics under the microwave field were also studied. The results show that the apparent heating rate of the zinc oxide dust increases with the increase in microwave roasting power and decreases with the increase in the sample mass. The temperature of the samples reaches approximately 800 °C after microwave treatment for 8 min, which indicates that the zinc oxide dust has strong microwave-absorption ability.