[Objective] This study aimed to establish molecular identification methods for Bacillus licheniformis. [Method] Based on clone sequencing and difference analysis for 16S and ITS sequences of B. licheniformis TS-01, specific primers were designed using region sequences as the targets used for amplifying all test strains. [Result] The specific primers of B. licheniformis were designed from the ITS and 16S rDNA regions. The optimal annealing temperature of the specific primers for PCR was 67.2 ℃ with 24 cycles. A 905 bp marker fragment was amplified for B. licheniformis TS-01, while all other test strains showed negative results. This indicated that a specific 16S-ITS marker was obtained, which accurately identified the strain at the species level. [Conclusion] This molecular identification method for B. licheniformis TS-01 has laid the foundation for molecular diagnosis of B. licheniformis.
In an effort to simplify the procedure and to reduce the cost of fluorescence SSR analysis, the conditions of the multiplex PCR and the multiplex gel electrophoresis were optimized in the genetic analysis of sunflower (Helianthus annuus L.) inbred lines. Results indicated that factors for a successful multiplex PCR assay were related to the cycling touchdown annealing temperature, the balance of primer concentration at the various loci, the concentration of PCR buffer and the Taq DNA polymerase. Based on the optimization, a tailed primer strategy was outlined, and the effective ways were proposed to overcome the troubleshootings commonly encountered in the multiplex PCR and the multiplex gel electrophoresis.