您的位置: 专家智库 > >

杨贵

作品数:20 被引量:55H指数:4
供职机构:山西大学计算机与信息技术学院更多>>
发文基金:国家自然科学基金山西省回国留学人员科研经费资助项目山西省自然科学基金更多>>
相关领域:自动化与计算机技术文化科学自然科学总论更多>>

文献类型

  • 17篇中文期刊文章

领域

  • 15篇自动化与计算...
  • 1篇文化科学
  • 1篇自然科学总论

主题

  • 11篇网络
  • 7篇复杂网
  • 7篇复杂网络
  • 4篇聚类
  • 2篇蛋白
  • 2篇蛋白质
  • 2篇点覆盖
  • 2篇适应度
  • 2篇网络嵌入
  • 2篇稳定性
  • 2篇连通性
  • 2篇白质
  • 2篇标签
  • 1篇蛋白质复合体
  • 1篇蛋白质相互作...
  • 1篇蛋白质相互作...
  • 1篇实验教学
  • 1篇实验教学模式
  • 1篇实验教学体系
  • 1篇随机游走

机构

  • 17篇山西大学
  • 1篇教育部
  • 1篇内蒙古师范大...
  • 1篇吕梁学院

作者

  • 17篇杨贵
  • 13篇郑文萍
  • 1篇王文剑
  • 1篇钱宇华
  • 1篇嘉泽宁
  • 1篇郭炳
  • 1篇赵希武
  • 1篇王杰
  • 1篇王继荣
  • 1篇王宁
  • 1篇赵燕萍

传媒

  • 3篇计算机科学
  • 2篇计算机应用
  • 2篇山西师范大学...
  • 1篇计算机研究与...
  • 1篇模式识别与人...
  • 1篇南京大学学报...
  • 1篇计算机学报
  • 1篇软件学报
  • 1篇计算机仿真
  • 1篇现代教育技术
  • 1篇广西大学学报...
  • 1篇南京师范大学...
  • 1篇软件导刊.教...

年份

  • 1篇2024
  • 1篇2023
  • 4篇2022
  • 1篇2021
  • 2篇2020
  • 1篇2019
  • 3篇2017
  • 1篇2014
  • 1篇2013
  • 1篇2011
  • 1篇2008
20 条 记 录,以下是 1-10
排序方式:
基于双监督网络嵌入的社区发现算法被引量:1
2022年
针对基于网络嵌入的社区检测算法中节点嵌入和聚类过程独立进行时容易陷入局部极值的问题,文中提出基于双监督网络嵌入的社区发现算法.首先利用图自编码器,得到可保持网络的一阶相似性的节点嵌入.优化模块度,发现拓扑连接紧密的社区.采用自监督聚类优化,发现嵌入空间上相似的社区.引入互监督机制,使发现的社区在模块度优化和自监督聚类这两个角度上具有一致性,同时避免算法陷入局部极值.4个真实网络上的对比实验表明,DSNE性能较优.
郑文萍王英楠杨贵
关键词:网络嵌入模块度
一种基于局部路径信息的重叠社区发现算法
2022年
重叠社区发现是复杂网络分析的主要任务之一。针对现有的基于局部扩展和优化的重叠社区发现方法受初始种子节点选择影响较大、适应度函数无法度量节点间多样的连接方式等问题,提出了一种基于局部路径信息的重叠社区发现算法(Local Path Information-based Overlapping Community Detection Algorithm,LPIO)。首先选取局部极大度点作为初始种子节点,并根据社区内节点邻域标签一致性更新社区的种子节点集,避免初始种子节点对算法性能的影响;然后为度量稀疏网络中节点间多样的连接方式,给出了基于局部路径信息的社区适应度函数,扩展种子节点集得到社区结构;最后计算未聚类节点与社区种子集之间的点不重复路径数量,得到未聚类节点与已有社区间的距离,为未聚类节点分配社区。在4个有标签网络和8个无标签网络上,与7个经典重叠社区发现算法进行对比,实验结果表明,所提算法在重叠标准互信息(ONMI)、F1分数、扩展模块度(EQ)等方面表现良好。
郑文萍王宁杨贵
融合二连通模体结构信息的节点分类算法
2024年
节点表示学习将图结构数据信息编码到低维的潜在空间中,在节点分类、聚类、链路预测等机器学习任务中被广泛应用。在复杂网络中,节点与节点之间不仅存在直接相连的低阶结构,也存在以特殊连接模式形成的高阶结构,称为模体。提出一种融合二连通模体结构信息的节点分类算法(FMI),利用节点间高阶二连通模体信息学习节点表示,完成节点分类任务。首先,统计网络中的二连通模体,利用其中信息提出一个节点重要性的度量指标——模体比值。根据模体比值计算采样概率进行邻域采样;构造一个带权辅助图以融合网络节点连接的低阶关系与高阶关系,对节点进行加权邻域聚合以得到节点表示。在5个数据集Cora、Citeseer、Pubmed、Wiki和DBLP上执行节点分类任务,与5种经典基准算法进行对比,所提算法FMI在准确度和F1-分数等指标上表现良好。
郑文萍葛慧琳刘美麟杨贵
一种加权稠密子图社区发现算法被引量:9
2017年
目前,针对复杂网络的社区发现算法大多仅根据网络的拓扑结构来确定社区,然而现实复杂网络中的边可能带有表示连接紧密程度或者可信度意义的权重,这些先验信息对社区发现的准确性至关重要.针对该问题,提出了基于加权稠密子图的重叠聚类算法(overlap community detection on weighted networks,简称OCDW).首先,综合考虑网络拓扑结构及真实网络中边权重的影响,给出了一种网络中边的权重定义方法;进而给出种子节点选取方式和权重更新策略;最终得到聚类结果.OCDW算法在无权网络和加权网络都适用.通过与一些经典的社区发现算法在9个真实网络数据集上进行分析比较,结果表明算法OCDW在F度量、准确度、分离度、标准互信息、调整兰德系数、模块性及运行时间等方面均表现出较好的性能.
杨贵郑文萍王文剑王文剑
关键词:复杂网络
基于随机游走的改进标签传播算法被引量:4
2020年
社区发现是挖掘社交网络隐藏信息的一个有用的工具,而标签传播算法(LPA)是社区发现算法中的一种常见算法,不需要任何的先验知识,且运行速度快。针对标签传播算法有很强的随机性而导致的社区发现算法结果不稳定的问题,提出了一种基于随机游走的改进标签传播算法(LPARW)。首先,根据在网络上进行随机游走确定了节点重要性的排序,从而得到节点的更新顺序;然后,遍历节点的更新序列,对每个节点将其与排序在其之前的节点进行相似性计算,若该节点与排序在其之前的节点是邻居节点且它们之间的相似性大于阈值,则将排序在其之前的节点选为种子节点;最后,将种子节点的标签传播给其余的节点,得到社区的最终划分结果。将所提算法与一些经典的标签传播算法在4个有标签的网络和5个无标签的真实网络上进行比较分析,实验结果表明所提算法在标准互信息(NMI)、调整兰德系数(ARI)和模块度等经典的评价指标上的性能均优于其余对比算法,可见该算法具有很好的社区划分效果。
郑文萍岳香豆杨贵
关键词:复杂网络随机游走
基于节点聚类复杂度的图聚类方法
2023年
图聚类可以发现网络中的社区结构,是复杂网络分析中的一项重要任务。针对不同节点的聚类难度各异的问题,提出了一种基于节点聚类复杂度的图聚类算法(Graph Clustering Algorithm Based on Node Clustering Complexity,GCNCC),用于判断节点的聚类复杂度,为聚类复杂度低的节点赋予伪标签,利用伪标签提供的监督信息降低其他节点的聚类复杂度,进而得到网络聚类结果。GCNCC包括节点表示、节点聚类复杂度判别和图聚类3个主要模块。节点表示模块得到保持网络集聚性的表示;节点聚类复杂度判别模块用于判断网络中的低聚类复杂度节点,并利用低聚类复杂度节点的伪标签信息来优化更新网络中其他节点的聚类复杂度;图聚类模块采用标签传播方法,将低聚类复杂度节点标签传播给高聚类复杂度节点,以得到聚类结果。在3个真实的引文网络和3个生物数据集上与9种经典算法进行对比,算法GCNCC在ACC,NMI,ARI和F1等方面均表现良好。
郑文萍王富民刘美麟杨贵
关键词:网络嵌入
基于最短路径的关键蛋白质识别研究被引量:1
2011年
关键蛋白质的识别有助于从系统水平上理解生命活动过程,基于蛋白质相互作用网络拓扑特征的关键蛋白质识别可以有效地提高识别精度和速度。通过蛋白质节点的最短路径数和点介数可以作为衡量其节点中心度的方法,但计算速度和计算规模有限。根据所预测蛋白质相互作用网络的特点,提出了基于最短路径技术的关键蛋白质识别方法,选择合理的识别阈值和拓扑参数,对全蛋白质相互作用网络的关键蛋白质进行预测。实验表明,所提出的识别方法可以有效描述蛋白质节点的重要性,在不影响计算精度的前提下,可对连通性好,边密度大的全蛋白质相互作用网络进行关键蛋白质识别。
嘉泽宁杨贵郑文萍
关键词:蛋白质相互作用网络最短路径介数
一种基于节点稳定性的社区发现算法被引量:1
2021年
许多成功的社区发现算法已经被广泛应用于复杂网络社区发现任务中.随着数据复杂性的增加,网络中节点间的关系也呈现多样化的特点,因此提出一种基于信息熵的节点稳定性度量方法,衡量网络中节点在社区划分中的稳定性;并在此基础上提出一种基于节点稳定性的社区发现算法(Node Stability⁃based Algorithm,NSA).首先得到网络的t种社区划分,计算各节点的标签熵,选择熵小于一定阈值的节点作为网络的稳定节点集S;然后,利用所得到的稳定节点集S从原网络中抽取一个包含S的连通子图Gs,使Gs中节点的不稳定性尽可能低;在连通子图Gs上进行社区发现,得到初始聚类结果,再计算其他未聚类节点与初始类簇的距离,确定其社区归属,得到最终聚类结果.在四个带标签真实网络数据集和八个不带标签的真实网络数据集上,与LPA,Infomap,Walktrap,BGLL,LPA⁃S等经典算法的比较实验表明,所提出的NSA算法能够较好地进行社区发现,在NMI和模块度等方面表现良好.
郑文萍刘美麟穆俊芳杨贵
关键词:复杂网络
一种基于节点稳定性和邻域相似性的社区发现算法被引量:4
2022年
复杂网络规模的增大导致网络中社区结构变得复杂,节点与社区之间的关系更多样化,有效度量大规模网络中节点邻域的社区构成,并对社区归属确定性有差异的节点分别进行处理,可以提高算法的社区发现质量。基于此,提出了一种基于节点稳定性和邻域相似性的社区发现算法(Node Stability and Neighbor Similarity Based Community Detection Algorithm, NSNSA)。首先定义节点的标签熵并对节点在社区发现过程中的稳定性进行度量,选择标签熵较低的节点作为稳定节点集;其次根据节点邻域的标签构成情况定义节点的邻域相似性,对节点与其邻居节点的社区归属一致性进行度量;然后利用稳定节点与其直接邻居中邻域相似性最高的节点构造初始网络,并在该子网络上运行标签传播算法,以得到可靠性较高的初始社区发现结果;最后将未聚类节点分配至与其Katz相似性最高的节点所在的社区,对小规模社区进行合并处理,以得到最终的社区划分结果。在真实网络及人工网络数据集上,与LPA,BGLL,Walktrap, Infomap, LPA-S等经典社区发现算法的对比实验表明,NSNSA算法在模块度以及标准互信息方面表现良好。
郑文萍刘美麟杨贵
关键词:复杂网络
一种基于节点间路径度量的图聚类算法被引量:5
2020年
图聚类算法可以用于发现社会网络中的社区结构、蛋白质互作用网络中的功能模块等,是当前复杂网络研究的热点之一.对网络中节点的相似性和簇发现结果进行合理度量是核心问题.针对此问题,给出了一种基于节点间点不重复路径度量的节点相似性指标.以此为基础提出了一种面向复杂网络的基于“中心-扩展”策略的图聚类算法(A Graph Clustering Algorithm Based on Local Paths between Nodes in Complex Networks,PGC),包括节点相似性计算、中心节点选择、初始簇划分和簇优化四个主要过程.采用点不重复路径对节点相似性进行度量,消除了由大度节点引起较多的点重复路径对节点相似性的影响,提高了算法对大度节点邻域中节点的划分能力.通过与一些经典算法在11个真实网络、22个人工网络数据集上的实验比较分析,结果表明算法PGC在标准互信息、调整兰德系数、F度量、准确度等方面均表现出良好的性能.
郑文萍车晨浩钱宇华钱宇华杨贵
关键词:复杂网络簇结构连通性
共2页<12>
聚类工具0