The effects of Mn and Sn on the microstructure of Al?7Si?Mg alloy modified by Sr and Al?5Ti?B were studied. The results show that the columnar dendrites structure is observed with high content of Sr, indicating a poisoning effect of the Al?5Ti?B grain refinement. In addition, Sr intermetallic compounds distribute on the TiB2 particles, which agglomerate inside the eutectic Si. The mechanism responsible for such poisoning was discussed. The addition of Mn changes the morphology of iron intermetallic compounds fromβ-Al5FeSi toα-Al(Mn,Fe)Si. Increasing the amount of Mn changes the morphology ofα-Al(Mn,Fe)Si from branched shape to rod-like shape with branched distribution, and finally convertsα-Al(Mn,Fe)Si to Chinese script shape. The microstructure observed by transmission electron microscopy (TEM) shows that Mg is more likely to interact with Sn in contrast with Si under the effect of Sn. Mg2Sn compound preferentially precipitates between the Si/Si interfaces and Al/Si interfaces.
Effect of pre-annealing treatment temperature on compactibility of gas-atomized Al-27%Si alloy powders was investigated. Microstructure and hardness of the annealed powders were characterized. Pre-annealing results in decreasing Al matrix hardness, dissolving of needle-like eutectic Si phase, precipitation and growth of supersaturated Si atoms, and spheroidisation of primary Si phase. Compactibility of the alloy powders is gradually improved with increasing the annealing temperature to 400 ℃. However, it decreases when the temperature is above 400 ℃ owing to the existence of Si-Si phase clusters and the densely distributed Si particles. A maximum relative density of 96.1% is obtained after annealing at 400 ℃ for 4 h. In addition, the deviation of compactibility among the pre-annealed powders reaches a maximum at a pressure of 175 MPa. Therefore, a proper pre-annealing treatment can significantly enhance the cold compactibility of gas-atomized Al-Si alloy powders.
The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microscopy(OM), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). The experimental results indicate that the alloy refined by Al-5Ti-B alloy exhibits equiaxed α(Al) dendrites and performs better wear resistance compared with the alloy without the grain refiner. Moreover, the addition of Mn can change the β-Al5 Fe Si phase to α-Al(Mn,Fe)Si phase and reduce the possibility of crack formation, thus improving the wear resistance. Sn added to A356 aluminum alloy forms Mg2 Sn precipitates after heat treatment. Therefore, the unrealizable precipitation hardening Mg2 Si phase and the softening β-Sn phase can reduce the hardness of the alloy, and finally reduce the wear resistance.