为提高CMOS集成电路中电流基准的精度和稳定性,提出了一种结构简单,电源抑制比(PSRR)很高的电流基准结构——三支路电流基准.应用基尔霍夫定律(Kirchhoff’s current and voltage law,Kcl Kvl)和偏微分方程,对比分析了传统的电流基准、共源共栅电流基准以及三支路电流基准的小信号模型,求解出了这3种电路的电源抑制比公式.对比发现传统电流基准和共源共栅电流基准的节点电压正反馈限制了电流基准的性能,三支路结构由于节点电压成强负反馈,拥有更高的PSRR.三支路电流基准采用了一阶温度补偿方案,保证了温度稳定性.经CSMC0.5μm工艺仿真结果显示,三支路基准在输入电压1.5~5.0V的低频PSRR达-77.9dB,明显优于另外两种结构;在~20~120℃温度区间内输出电流稳定性达到了255×10^-6/℃,满足了大多数应用的要求.
以设计输出电流为800mA的高稳定线性稳压器(low-dropout voltage regulator,LDO)为目标,利用工作在线性区的MOS管具有压控电阻特性,构造零点跟踪电路以抵消随输出电流变化的极点,并且采用了改进型米勒补偿方案使电路系统具有60°的相位裕度,达到了大输出电流下的高稳定性要求.另外,分析了电路在转换发生时电路结构参数和负载整流特性的关系,提出了一种能在瞬间提供大电流的转换速率加强电路,达到了在负载电流从800mA到10mA跳变时,输出电压的跳变量控制在60mV以内,并且最长输出电压恢复时间在500μs以内.芯片采用CSMC公司的0.6μm CMOS数模混合信号工艺设计,并经过流片和测试,测试结果验证了设计方案.