稀疏矩阵与向量相乘(Sp MV)是科学计算和工程应用中一个重要问题,而且非常适宜进行并行计算,目前在GPU对Sp M V的实现和优化是一个研究热点.针对准对角矩阵存在的一些不规则性,采用CSR+DLA混合存储格式来进行Sp M V计算,能够提高压缩的效果.为了发挥CPU多核的并行计算能力,采用一种CPU+GPU混合计算模式,这样可以把混合存储格式不同格式的数据分割到CPU和GPU上,从而提高了资源的利用效能.本文另外还在分析CPU+GPU异构计算模式的特征基础上,提出一些优化策略,能够改进准对角矩阵与向量相乘在异构计算环境中的计算性能.