Coupled thermo-mechanical model was used to investigate the effects of the pin diameter, the shoulder diameter and the in conical angle on the heat generations, the material deformations and the energy histories in friction stir welding(FSW) of AA2024-T3 alloy. Results indicate that the shoulder-plate contact area takes more important contribution to the heat generation than the pin-plate contact area. The increase of the shoulder diameter or the decrease of the pin diameter can lead to the increase of the welding temperature in FSW, but the change of shoulder size is more important. Compared to the cases in FSW of AA6061-T6, the input power is obviously increased in FSW of AA2024-T3 and the ratio of the plastic dissipation to the friction dissipation becomes decreased.