传统的数据处理群方法(Group method of data handling,GMDH)在结构上具有自组织和全局选优的特性,非常适合进行非线性数据的拟合。但由于在传统GMDH网络建模是用最小二乘法来辨识参数,常常使得模型预测效果不理想。遗传算法是一种有效的搜索和优化方法,它具有自适应搜索、渐进式寻优、并行式搜索、通用性强等特点,论文将遗传算法引入GMDH网络,用遗传算法辨识部分描述式的系数,建立了基于遗传算法的GMDH网络模型。并将该模型应用于一组实测时间序列的预测研究,计算机仿真结果表明,模型预测效果令人满意。
针对传统数据处理组合方法(Group method of data handling,GMDH)网络建模用最小二乘法辨识参数会导致模型预测效果不理想的问题,将模糊推理模型引入GMDH网络,以取代传统GMDH网络的部分描述(即完全二元二次多项式),提出了一种基于模糊GMDH网络的交通流量预测模型。计算机仿真结果表明,该模型预测平均相对误差仅为2.31%,小于传统GMDH网络模型预测平均相对误差3.35%,说明了该模型是有效的。